threadpool_w_triangulation/triangulation.cpp

479 lines
14 KiB
C++

#include <thread>
#include <chrono>
#include <ctime>
#include <cstdlib>
#include <iostream>
#include <mutex>
#include <vector>
#include <queue>
#include <atomic>
#include <condition_variable>
#include <cmath>
#include <map>
#include <random>
#include "libpoly.h"
//############################################################ GLOBALS
std::condition_variable can_pop;
std::condition_variable can_push;
std::atomic_uint32_t active_producents;
std::atomic_uint32_t active_consuments;
std::ostream& os = std::cout;
std::mutex os_l;
//############################# MODIFY HERE
constexpr unsigned NUM_PRODUCENTS = 2;
constexpr unsigned NUM_WORKERS = 5;
//############################################################ COMMON STRUCTURES
struct Temp_Task: public std::enable_shared_from_this< Temp_Task > {
LP_Polygon p;
double minimal_triangulation;
Temp_Task(LP_Polygon&& _p): p(_p){}
};
using Temp_Task_p = std::shared_ptr< Temp_Task >;
class Task {
private:
Temp_Task_p task;
double triangulate_basic(LP_Polygon* p);
double triangulate();
double triangulate_subpolys(std::vector<bool> poly_key,
std::map< std::vector<bool>, double>* m);
std::vector<bool> create_key(std::vector<int>* indices);
public:
Task(): task(nullptr){};
Task(const Task&) = delete;
Task(Task&& t): task(t.task){
t.task.reset();
}
Task(Temp_Task_p&& tp): task(tp){}
double solution() const { return task->minimal_triangulation; }
bool is_empty() const {
return task.get() == nullptr;
}
void solve_stupid(){
task->minimal_triangulation = triangulate_basic(&(task->p));
}
void solve_less_stupid(){ task->minimal_triangulation = triangulate(); }
Temp_Task_p unwrap(){ // TODO: vymyslet jinak, zaručit po tomto kroku selfdestruct
return std::move(task);
}
};
class Queue{
std::queue<Task> q;
std::mutex q_l;
const size_t MAX_LENGHT = 100'000;
public:
void push(Task&& t){
std::unique_lock<std::mutex> pushlock(q_l);
can_push.wait(pushlock, [this](){ return (q.size() < MAX_LENGHT); });
q.push(std::move(t));
pushlock.unlock();
can_pop.notify_one();
}
Task pop(){
std::unique_lock<std::mutex> poplock(q_l);
can_pop.wait(poplock, [this](){ return !is_empty(); });
Task t(std::move(q.front()));
q.pop();
poplock.unlock();
can_push.notify_one();
return t;
}
bool is_empty( ){
return q.empty();
}
};
using task_queue_ptr = std::shared_ptr<Queue>;
//############################################################ DEBUG HELPERS
void print_point(LP_Point* p){
std::cout << "{ " << p->x << ", " << p->y << " }";
}
void print_polygon(LP_Polygon* p){
std::cout << "{\n";
for(size_t i = 0; i < p->points.size(); i++){
std::cout << " ";
print_point(&(p->points[i]));
if(i < p->points.size() - 1) std::cout << ",\n";
else std::cout << "\n";
}
std::cout << "}\n";
}
void task_test(){
std::vector< LP_Point > v1 = {{0,0}, {1,1}, {3,1}, {2,0}};
std::vector< LP_Point > v2 = {{0,0}, {0,1}, {1,2}, {2,1}, {2,0}};
std::vector< LP_Point > v3 = {{0,0}, {1,1}, {2,2}, {3,1}, {2,0}, {1,-1}};
LP_Polygon p1(std::move(v1));
LP_Polygon p2(std::move(v2));
LP_Polygon p3(std::move(v3));
Temp_Task_p tp1 = std::make_shared<Temp_Task>(std::move(p1));
Temp_Task_p tp2 = std::make_shared<Temp_Task>(std::move(p2));
Temp_Task_p tp3 = std::make_shared<Temp_Task>(std::move(p3));
Task t1(std::move(tp1));
Task t2(std::move(tp2));
Task t3(std::move(tp3));
auto start1 = std::chrono::high_resolution_clock::now();
t1.solve_stupid();
auto end1 = std::chrono::high_resolution_clock::now();
auto start2 = std::chrono::high_resolution_clock::now();
t2.solve_stupid();
auto end2 = std::chrono::high_resolution_clock::now();
auto start3 = std::chrono::high_resolution_clock::now();
t3.solve_stupid();
auto end3 = std::chrono::high_resolution_clock::now();
auto duration1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start1);
auto duration2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - start2);
auto duration3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - start3);
std::cout << "4 vertices:\ncorrect: calculated:\n" << "1.414 " << t1.solution() << " taking " << duration1.count() << "ms" << std::endl;
std::cout << "5 vertices:\ncorrect: calculated:\n" << "4.236 " << t2.solution() << " taking " << duration2.count() << "ms" << std::endl;
std::cout << "6 vertices:\ncorrect: calculated:\n" << "5.414 " << t3.solution() << " taking " << duration3.count() << "ms" << std::endl << std::endl;
start1 = std::chrono::high_resolution_clock::now();
t1.solve_less_stupid();
end1 = std::chrono::high_resolution_clock::now();
start2 = std::chrono::high_resolution_clock::now();
t2.solve_less_stupid();
end2 = std::chrono::high_resolution_clock::now();
start3 = std::chrono::high_resolution_clock::now();
t3.solve_less_stupid();
end3 = std::chrono::high_resolution_clock::now();
duration1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start1);
duration2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - start2);
duration3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - start3);
std::cout << "SECOND VERSION:\n\n";
std::cout << "4 vertices:\ncorrect: calculated:\n" << "1.414 " << t1.solution() << " taking " << duration1.count() << "ms" << std::endl;
std::cout << "5 vertices:\ncorrect: calculated:\n" << "4.236 " << t2.solution() << " taking " << duration2.count() << "ms" << std::endl;
std::cout << "6 vertices:\ncorrect: calculated:\n" << "5.414 " << t3.solution() << " taking " << duration3.count() << "ms" << std::endl << std::endl;
}
//############################################################ PRODUCE THREAD
/*
class Producent{
private:
task_queue_ptr task_queue;
public:
Producent(task_queue_ptr tq): task_queue(tq){ active_producents++; }
Producent(const Producent&) = delete;
~Producent(){ active_producents--; }
Task get_task(){
//LP_Task_p tp = pickup_task();
os_l.lock();
os << "picked up" << std::endl;
os_l.unlock();
//#########################3TEMP_PART:
// std::vector< LP_Point > points;
// srand(static_cast<unsigned int>(std::chrono::system_clock::now().time_since_epoch().count()));
// int num_of_points = (rand()%10) + 1;
// for(int i = 0; i < num_of_points; i++){
// LP_Point p;
// p.x = rand()%199 +1;
// p.y = rand()%199 +1;
// points.push_back(p);
// }
// LP_Polygon p(std::move(points));
// Temp_Task_p tp = std::make_shared<Temp_Task>(std::move( p ));
return Task(std::move(tp));
}
void fill_queue(){
while(1){
Task t = get_task();
if(t.is_empty()) break;
else{
task_queue->push(std::move(t));
os_l.lock();
os << "queued" << std::endl;
os_l.unlock();
}
}
os_l.lock();
os << "p ready to join" << std::endl;
os_l.unlock();
}
};
void produce_thread(task_queue_ptr task_queue){
Producent p(task_queue);
p.fill_queue();
}
//############################################################ WORKER THREAD
class Consument {
private:
task_queue_ptr task_queue;
public:
Consument(task_queue_ptr tq): task_queue(tq){ active_consuments++; }
Consument(const Consument&) = delete;
~Consument() { active_consuments--; }
Task get_task(){ // might be redundant
os_l.lock();
os << "processing" << std::endl;
os_l.unlock();
return task_queue->pop();
}
void work(){
while(active_producents || ! task_queue->is_empty()){
Task t = get_task();
t.solve_stupid();
submit_task(std::move(t.unwrap()));
os_l.lock();
os << t.solution() << std::endl;
os_l.unlock();
}
os_l.lock();
os << "c ready to join" << std::endl;
os_l.unlock();
}
};
void consume_thread(task_queue_ptr task_queue){
Consument c(task_queue);
c.work();
}
*/
//############################################################ TRIANGULATION
struct Line{
LP_Point a;
LP_Point b;
double length;
Line() = delete;
Line(LP_Point _a, LP_Point _b): a(_a), b(_b){
LP_Point vec_ba;
vec_ba.x = b.x - a.x;
vec_ba.y = b.y - a.y;
length = sqrt(vec_ba.x*vec_ba.x + vec_ba.y*vec_ba.y);
}
Line(Line& l): a(l.a), b(l.b), length(l.length){}
};
double Task::triangulate_basic(LP_Polygon* p){
size_t poly_size = p->points.size();
if(poly_size == 3) return 0.;
if(poly_size == 4){
Line cut1(p->points[0],
p->points[2]);
Line cut2(p->points[1],
p->points[3]);
return std::min(cut1.length, cut2.length);
}
double triangulation = INFINITY;
double min_triangulation = INFINITY;
for (size_t point_idx = 0; point_idx < poly_size; point_idx++){
Line cut(p->points.at( (point_idx + poly_size - 1) % poly_size ),
p->points.at( (point_idx + poly_size + 1) % poly_size ));
std::vector<LP_Point> smaller_poly;
for(size_t i = 0; i < poly_size; i++){
if(i != point_idx) smaller_poly.push_back(p->points.at(i));
}
LP_Polygon s_p(std::move(smaller_poly));
// if(poly_size == 6){
// std::cout << "From poly:\n";
// print_polygon(p);
// std::cout << "created:\n";
// print_polygon(&s_p);
// std::cout << "by cut " << (point_idx + poly_size - 1) % poly_size << "->" << (point_idx + poly_size + 1) % poly_size << "\n\n";
// }
double s_triang = triangulate_basic(&s_p);
triangulation = s_triang + cut.length;
min_triangulation = std::min(triangulation, min_triangulation);
// if(triangulation < min_triangulation) min_triangulation = triangulation;
// std::cout << "Poly size = " << poly_size <<
// "\nCutted point = ";
// print_point(&(p->points[point_idx]));
// std::cout << " by ";
// print_point(&(cut.a));
// std::cout << " -> ";
// print_point(&(cut.b));
// std::cout << "\nTriang = " << triangulation <<
// "\nPrev min triang = " << prev_min_t <<
// "\nMin triang = " << min_triangulation << "\n\n";
}
return min_triangulation;
}
//########################### attempt of thought
// build a list (array?) of all cut lengths ... n
// build a list of "quatrogones"-> pentagones -> hexagones -> ....; each of them carries its min_triangulation
// end up with our polygone already w min triang.
// not really better i guess...
//########################### dynamic something
//use std::map to store triangulations of polygons
// ! only for small polygons: int is too small
double Task::triangulate(){
std::map<std::vector<bool>, double> m;
std::vector<bool> poly_key(task->p.points.size(), true);
return triangulate_subpolys(poly_key, &m);
//
// return triangulate_subpolys_but_better();
}
std::vector<bool> Task::create_key(std::vector<int>* indices){
size_t key_length = task->p.points.size();
std::vector<bool> key(key_length, false);
for(size_t i = 0; i < indices->size(); i++){
key[indices->at(i)] = true;
}
return key;
}
double Task::triangulate_subpolys(std::vector<bool> poly_key, std::map< std::vector<bool>, double>* m){
if (m->contains(poly_key)) return m->at(poly_key); // ! contains() is c++20
// SET VARIABLES
std::vector<LP_Point> curr_points;
std::vector<int> curr_indices;
for(size_t i = 0; i < task->p.points.size(); i++){
if(poly_key.at(i)){
curr_points.push_back(task->p.points.at(i));
curr_indices.push_back(i);
}
}
LP_Polygon poly(std::move(curr_points));
size_t poly_size = poly.points.size();
double triangulation = INFINITY;
double min_triangulation = INFINITY;
// EDGE CASES
if(poly_size == 3){
(*m)[poly_key] = 0.;
return 0.;
}
if(poly_size == 4){
Line cut1(curr_points[0],
curr_points[2]);
Line cut2(curr_points[1],
curr_points[3]);
min_triangulation = std::min(cut1.length, cut2.length);
(*m)[poly_key] = min_triangulation;
return min_triangulation;
}
for (size_t point_idx = 0; point_idx < poly_size; point_idx++){
Line cut(poly.points.at( (point_idx + poly_size - 1) % poly_size ),
poly.points.at( (point_idx + poly_size + 1) % poly_size ));
std::vector<int> sub_indices = curr_indices;
sub_indices.erase(sub_indices.begin() + point_idx);
triangulation = triangulate_subpolys( create_key( &sub_indices ), m )
+ cut.length;
min_triangulation = std::min(triangulation, min_triangulation);
// if(triangulation < min_triangulation) min_triangulation = triangulation;
}
(*m)[poly_key] = min_triangulation;
return min_triangulation;
}
//########################### dynamic something but better
//############################################################ MAIN
int main(){
//############################### MULTI THREAD
// active_producents = active_consuments = 0;
// task_queue_ptr queue_ptr = std::make_shared<Queue>();
// std::vector<std::thread> threads;
// for(unsigned int i = 0; i < NUM_PRODUCENTS; i++){
// threads.emplace_back(produce_thread, queue_ptr);
// }
// for(unsigned int i = 0; i < NUM_WORKERS; i++){
// threads.emplace_back(consume_thread, queue_ptr);
// }
// for(auto& t : threads){
// t.join();
// os_l.lock();
// os << "joined" << std::endl;
// os_l.unlock();
// }
//############################### SINGLE THREAD
// while(1){
// LP_Task_p tp = pickup_task();
// if(!tp) break;
// Task t(std::move(tp));
// t.solve_stupid();
// submit_task(std::move(t.unwrap()));
// }
//############################### CONNECTION TEST
// test();
//############################### TRIANGULATION TEST
task_test();
}