testing improved + OFB

This commit is contained in:
Hladu357 2024-11-20 18:19:42 +01:00
parent 3c746784b6
commit d8021e9352
4 changed files with 779 additions and 440 deletions

View File

@ -1,402 +0,0 @@
#include <stdio.h>
#include <stdint.h>
/* AES-128 simple implementation template and testing */
/*
Author: Ondrej Hladuvka, hladuond@fit.cvut.cz
Template: Jiri Bucek 2017
AES specification:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
/* AES Constants */
// forward sbox
const uint8_t SBOX[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // A
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // B
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // C
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // D
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // E
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 // F
};
const uint8_t rCon[12] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
};
/* AES state type */
typedef uint32_t t_state[4];
/* Helper functions */
void hexprint16(uint8_t *p) {
for (int i = 0; i < 16; i++)
printf("%02hhx ", p[i]);
puts("");
}
void hexprintw(uint32_t w) {
for (int i = 0; i < 32; i += 8)
printf("%02hhx ", (w >> i) & 0xffU);
}
void hexprintws(uint32_t * p, int cnt) {
for (int i = 0; i < cnt; i++)
hexprintw(p[i]);
puts("");
}
void printstate(t_state s) {
hexprintw(s[0]);
hexprintw(s[1]);
hexprintw(s[2]);
hexprintw(s[3]);
puts("");
}
uint32_t word(uint8_t a0, uint8_t a1, uint8_t a2, uint8_t a3) {
return a0 | (uint32_t)a1 << 8 | (uint32_t)a2 << 16 | (uint32_t)a3 << 24;
}
uint8_t wbyte(uint32_t w, int pos) {
return (w >> (pos * 8)) & 0xff;
}
// **************** AES functions ****************
uint32_t subWord(uint32_t w) {
return word(SBOX[wbyte(w, 0)], SBOX[wbyte(w, 1)], SBOX[wbyte(w, 2)], SBOX[wbyte(w, 3)]);
}
void subBytes(t_state s) {
unsigned char* p = reinterpret_cast<unsigned char*>(s);
for (int i = 0; i < 16; ++i)
p[i] = SBOX[p[i]];
}
void shiftRows(t_state s) {
uint32_t tmp[4];
tmp[0] = s[0] & 0x0000FF00;
tmp[1] = s[1] & 0x0000FF00;
tmp[2] = s[2] & 0x0000FF00;
tmp[3] = s[3] & 0x0000FF00;
s[0] = (s[0] & 0xFFFF00FF) | tmp[1];
s[1] = (s[1] & 0xFFFF00FF) | tmp[2];
s[2] = (s[2] & 0xFFFF00FF) | tmp[3];
s[3] = (s[3] & 0xFFFF00FF) | tmp[0];
tmp[0] = s[0] & 0x00FF0000;
tmp[1] = s[1] & 0x00FF0000;
tmp[2] = s[2] & 0x00FF0000;
tmp[3] = s[3] & 0x00FF0000;
s[0] = (s[0] & 0xFF00FFFF) | tmp[2];
s[1] = (s[1] & 0xFF00FFFF) | tmp[3];
s[2] = (s[2] & 0xFF00FFFF) | tmp[0];
s[3] = (s[3] & 0xFF00FFFF) | tmp[1];
tmp[0] = s[0] & 0xFF000000;
tmp[1] = s[1] & 0xFF000000;
tmp[2] = s[2] & 0xFF000000;
tmp[3] = s[3] & 0xFF000000;
s[0] = (s[0] & 0x00FFFFFF) | tmp[3];
s[1] = (s[1] & 0x00FFFFFF) | tmp[0];
s[2] = (s[2] & 0x00FFFFFF) | tmp[1];
s[3] = (s[3] & 0x00FFFFFF) | tmp[2];
}
uint8_t xtime(uint8_t c) {
uint8_t m = ((c & 0x80) >> 7) * 0x1B;
return (c << 1) ^ m;
}
void mixColumns(t_state s) {
for (int i = 0; i < 4; i++) {
uint8_t a0 = wbyte(s[i], 0);
uint8_t a1 = wbyte(s[i], 1);
uint8_t a2 = wbyte(s[i], 2);
uint8_t a3 = wbyte(s[i], 3);
uint8_t r0 = xtime(a0) ^ xtime(a1) ^ a1 ^ a2 ^ a3;
uint8_t r1 = xtime(a1) ^ xtime(a2) ^ a2 ^ a3 ^ a0;
uint8_t r2 = xtime(a2) ^ xtime(a3) ^ a3 ^ a0 ^ a1;
uint8_t r3 = xtime(a3) ^ xtime(a0) ^ a0 ^ a1 ^ a2;
s[i] = word(r0, r1, r2, r3);
}
}
/*
* Key expansion from 128bits (4*32b)
* to 11 round keys (11*4*32b)
* each round key is 4*32b
*/
void expandKey(uint8_t k[16], uint32_t ek[44]) {
for (int i = 0; i < 4; i++) {
ek[i] = word(k[4*i], k[4*i + 1], k[4*i + 2], k[4*i + 3]);
}
for (int i = 4; i < 44; i++) {
uint32_t temp = ek[i - 1];
if (i % 4 == 0) {
// RotWord, SubWord, and XOR with Rcon
temp = subWord((temp >> 8) | (temp << 24)) ^ rCon[i / 4];
}
ek[i] = ek[i - 4] ^ temp;
}
}
/* Adding expanded round key (prepared before) */
void addRoundKey(t_state s, uint32_t ek[], short index) {
for (int i = 0; i < 4; i++) {
s[i] ^= ek[index + i];
}
}
void aes128(uint8_t *in, uint8_t *out, uint32_t * expKey)
{
t_state state;
state[0] = word(in[0], in[1], in[2], in[3]);
state[1] = word(in[4], in[5], in[6], in[7]);
state[2] = word(in[8], in[9], in[10], in[11]);
state[3] = word(in[12], in[13], in[14], in[15]);
printf("IN: ");
printstate(state);
for (int i = 0; i < 11; i++) {
printf("K%02d: ", i);
hexprintws(expKey + 4 * i, 4);
}
addRoundKey(state, expKey, 0);
for (int round = 0; round < 9; ++round) {
printf("round: %d\n", round);
subBytes(state);
shiftRows(state);
mixColumns(state);
addRoundKey(state, expKey, round * 4 + 4);
}
subBytes(state);
shiftRows(state);
addRoundKey(state, expKey, 10 * 4);
out[0] = wbyte(state[0], 0);
out[1] = wbyte(state[0], 1);
out[2] = wbyte(state[0], 2);
out[3] = wbyte(state[0], 3);
out[4] = wbyte(state[1], 0);
out[5] = wbyte(state[1], 1);
out[6] = wbyte(state[1], 2);
out[7] = wbyte(state[1], 3);
out[8] = wbyte(state[2], 0);
out[9] = wbyte(state[2], 1);
out[10] = wbyte(state[2], 2);
out[11] = wbyte(state[2], 3);
out[12] = wbyte(state[3], 0);
out[13] = wbyte(state[3], 1);
out[14] = wbyte(state[3], 2);
out[15] = wbyte(state[3], 3);
}
//****************************
// MAIN function: AES testing
//****************************
int main(int argc, char* argv[])
{
int test_failed = 0;
// test subBytes
printf("Testing subBytes\n");
{
t_state state = { 0x01234567,
0x89abcdef,
0xdeadbeef,
0x00112233 };
t_state res_state = { 0x7c266e85,
0xa762bddf,
0x1d95aedf,
0x638293c3 };
subBytes(state);
// printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
for (int i = 0; i < 4; i++) {
if (state[i] != res_state[i]) { printf("Mismatch at state[%d]!\n", i); test_failed = 1; }
}
}
// test shiftRows
printf("Testing shiftRows\n");
{
t_state state = { 0x01234567,
0x89abcdef,
0xdeadbeef,
0x00112233 };
t_state res_state = { 0x00adcd67,
0x0111beef,
0x892322ef,
0xdeab4533 };
shiftRows(state);
// printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
for (int i = 0; i < 4; i++) {
if (state[i] != res_state[i]) { printf("Mismatch at state[%d]! 0x%08x 0x%08x\n", i, res_state[i], state[i]); test_failed = 1; }
}
}
// test xtime
printf("Testing xtime\n");
{
uint8_t res[256] = { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12,
0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26,
0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a,
0x3c, 0x3e, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x62,
0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76,
0x78, 0x7a, 0x7c, 0x7e, 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a,
0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2,
0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, 0xc0, 0xc2, 0xc4, 0xc6,
0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda,
0xdc, 0xde, 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee,
0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, 0x1b, 0x19,
0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d,
0x03, 0x01, 0x07, 0x05, 0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31,
0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49,
0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45, 0x7b, 0x79, 0x7f, 0x7d,
0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61,
0x67, 0x65, 0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95,
0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85, 0xbb, 0xb9,
0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad,
0xa3, 0xa1, 0xa7, 0xa5, 0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1,
0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9,
0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5 };
for (uint16_t i = 0; i < 256; i++) {
//printf("0x%02hhx, ", xtime((uint8_t)i));
if (xtime((uint8_t)i)!=res[i]) {
printf("\nMismatch at xtime(0x%02x)! Comparison interrupted.\n", i); test_failed = 1;
break;
}
}
// puts("");
}
// test mixColumns
printf("Testing mixColumns\n");
{
t_state state = { 0x01234567,
0x89abcdef,
0xdeadbeef,
0x00112233 };
t_state res_state = { 0xcd678923,
0x45ef01ab,
0x9e69ba6f,
0x66334411 };
mixColumns(state);
// printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
// printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", res_state[0], res_state[1], res_state[2], res_state[3]);
for (int i = 0; i < 4; i++) {
if (state[i] != res_state[i]) { printf("Mismatch at state[%d]! 0x%08x\n", i, state[i]); test_failed = 1; }
}
}
// test key expansion
printf("Testing expandKey\n");
{
uint8_t key_b[16] = { 0xef, 0xbe, 0xad, 0xde, 0xbe, 0xba, 0xfe, 0xca, 0x0D, 0xF0, 0xAD, 0xBA, 0x00, 0x11, 0x22, 0x33 };
uint32_t key_w[44] = { 0 /*, ...*/ };
uint32_t res_key_w[44] = {
0xdeadbeef, 0xcafebabe, 0xbaadf00d, 0x33221100,
0xbd6e2d6c, 0x779097d2, 0xcd3d67df, 0xfe1f76df,
0x23d5ed56, 0x54457a84, 0x99781d5b, 0x67676b84,
0x7c50682d, 0x281512a9, 0xb16d0ff2, 0xd60a6476,
0x44a60f66, 0x6cb31dcf, 0xddde123d, 0x0bd4764b,
0xf78d474e, 0x9b3e5a81, 0x46e048bc, 0x4d343ef7,
0x9f6e5fdc, 0x0450055d, 0x42b04de1, 0x0f847316,
0xd8180013, 0xdc48054e, 0x9ef848af, 0x917c3bb9,
0x8e991071, 0x52d1153f, 0xcc295d90, 0x5d556629,
0x2bd5ec59, 0x7904f966, 0xb52da4f6, 0xe878c2df,
0xb54e504a, 0xcc4aa92c, 0x79670dda, 0x911fcf05,
};
expandKey(key_b, key_w);
for (int i = 0; i < 44; i++) {
// printf("0x%08x, ", key_w[i]);
// if (i % 4 == 3) printf("\n");
}
for (int i = 0; i < 44; i++) {
if (key_w[i] != res_key_w[i]) {
printf("Mismatch at key_w[%d]! Comparison interrupted.\n", i); test_failed = 1;
break;
}
}
printf("Testing addRoundKey\n");
// test AddRoundKey (last round)
t_state state = { 0x01234567, 0x89abcdef, 0xdeadbeef, 0x00112233 };
t_state res_state = { 0xb46d152d, 0x45e164c3, 0xa7cab335, 0x910eed36 };
addRoundKey(state, key_w, 40);
printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
for (int i = 0; i < 4; i++) {
if (state[i] != res_state[i]) { printf("Mismatch at state[%d]!\n", i); }
}
}
// test aes encryption
printf("Testing aes\n");
{
uint8_t key[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
uint8_t in[16] = { 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89 };
uint8_t out[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t res[16] = { 0xa3, 0x3a, 0xca, 0x68, 0x72, 0xa2, 0x27, 0x74, 0xbf, 0x99, 0xf3, 0x71, 0xaa, 0x99, 0xd2, 0x5a };
printf("Key: ");
hexprint16(key);
puts("");
printf("In: ");
hexprint16(in);
puts("");
uint32_t expKey[11 * 4];
expandKey(key, expKey);
aes128(in, out, expKey);
printf("Out: ");
hexprint16(out);
puts("");
for (int i = 0; i < 16; i++) {
if (out[i] != res[i]) { printf("Mismatch at out[%02d]! 0x%02x 0x%02x\n", i, out[i], res[i]); test_failed = 1; }
}
}
if (test_failed) {
printf("|*********** SOME TEST(S) FAILED ***********|\n");
printf("Please fix me!\n");
}
else {
printf("============== All tests OK! ===============\n");
}
return test_failed;
}

391
lab04-06_AES_PC/aes_4.cpp Normal file
View File

@ -0,0 +1,391 @@
#include <stdio.h>
#include <stdint.h>
/* AES-128 simple implementation template and testing */
/*
Author: Ondrej Hladuvka, hladuond@fit.cvut.cz
Template: Jiri Bucek 2017
AES specification:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
/* AES Constants */
// forward sbox
const uint8_t SBOX[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // A
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // B
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // C
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // D
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // E
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 // F
};
const uint8_t rCon[12] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
};
/* AES state type */
typedef uint32_t t_state[4];
/* Helper functions */
void hexprint16(uint8_t *p) {
for (int i = 0; i < 16; i++)
printf("%02hhx ", p[i]);
puts("");
}
void hexprintw(uint32_t w) {
for (int i = 0; i < 32; i += 8)
printf("%02hhx ", (w >> i) & 0xffU);
}
void hexprintws(uint32_t * p, int cnt) {
for (int i = 0; i < cnt; i++)
hexprintw(p[i]);
puts("");
}
void printstate(t_state s) {
hexprintw(s[0]);
hexprintw(s[1]);
hexprintw(s[2]);
hexprintw(s[3]);
puts("");
}
uint32_t word(uint8_t a0, uint8_t a1, uint8_t a2, uint8_t a3) {
return a0 | (uint32_t)a1 << 8 | (uint32_t)a2 << 16 | (uint32_t)a3 << 24;
}
uint8_t wbyte(uint32_t w, int pos) {
return (w >> (pos * 8)) & 0xff;
}
// **************** AES functions ****************
uint32_t subWord(uint32_t w) {
return word(SBOX[wbyte(w, 0)], SBOX[wbyte(w, 1)], SBOX[wbyte(w, 2)], SBOX[wbyte(w, 3)]);
}
void subBytes(t_state s) {
unsigned char* p = reinterpret_cast<unsigned char*>(s);
for (int i = 0; i < 16; ++i)
p[i] = SBOX[p[i]];
}
void shiftRows(t_state s) {
uint32_t tmp[4];
tmp[0] = s[0] & 0x0000FF00;
tmp[1] = s[1] & 0x0000FF00;
tmp[2] = s[2] & 0x0000FF00;
tmp[3] = s[3] & 0x0000FF00;
s[0] = (s[0] & 0xFFFF00FF) | tmp[1];
s[1] = (s[1] & 0xFFFF00FF) | tmp[2];
s[2] = (s[2] & 0xFFFF00FF) | tmp[3];
s[3] = (s[3] & 0xFFFF00FF) | tmp[0];
tmp[0] = s[0] & 0x00FF0000;
tmp[1] = s[1] & 0x00FF0000;
tmp[2] = s[2] & 0x00FF0000;
tmp[3] = s[3] & 0x00FF0000;
s[0] = (s[0] & 0xFF00FFFF) | tmp[2];
s[1] = (s[1] & 0xFF00FFFF) | tmp[3];
s[2] = (s[2] & 0xFF00FFFF) | tmp[0];
s[3] = (s[3] & 0xFF00FFFF) | tmp[1];
tmp[0] = s[0] & 0xFF000000;
tmp[1] = s[1] & 0xFF000000;
tmp[2] = s[2] & 0xFF000000;
tmp[3] = s[3] & 0xFF000000;
s[0] = (s[0] & 0x00FFFFFF) | tmp[3];
s[1] = (s[1] & 0x00FFFFFF) | tmp[0];
s[2] = (s[2] & 0x00FFFFFF) | tmp[1];
s[3] = (s[3] & 0x00FFFFFF) | tmp[2];
}
uint8_t xtime(uint8_t c) {
uint8_t m = ((c & 0x80) >> 7) * 0x1B;
return (c << 1) ^ m;
}
void mixColumns(t_state s) {
for (int i = 0; i < 4; i++) {
uint8_t a0 = wbyte(s[i], 0);
uint8_t a1 = wbyte(s[i], 1);
uint8_t a2 = wbyte(s[i], 2);
uint8_t a3 = wbyte(s[i], 3);
uint8_t r0 = xtime(a0) ^ xtime(a1) ^ a1 ^ a2 ^ a3;
uint8_t r1 = xtime(a1) ^ xtime(a2) ^ a2 ^ a3 ^ a0;
uint8_t r2 = xtime(a2) ^ xtime(a3) ^ a3 ^ a0 ^ a1;
uint8_t r3 = xtime(a3) ^ xtime(a0) ^ a0 ^ a1 ^ a2;
s[i] = word(r0, r1, r2, r3);
}
}
/*
* Key expansion from 128bits (4*32b)
* to 11 round keys (11*4*32b)
* each round key is 4*32b
*/
void expandKey(uint8_t k[16], uint32_t ek[44]) {
for (int i = 0; i < 4; i++) {
ek[i] = word(k[4*i], k[4*i + 1], k[4*i + 2], k[4*i + 3]);
}
for (int i = 4; i < 44; i++) {
uint32_t temp = ek[i - 1];
if (i % 4 == 0) {
// RotWord, SubWord, and XOR with Rcon
temp = subWord((temp >> 8) | (temp << 24)) ^ rCon[i / 4];
}
ek[i] = ek[i - 4] ^ temp;
}
}
/* Adding expanded round key (prepared before) */
void addRoundKey(t_state s, uint32_t ek[], short index) {
for (int i = 0; i < 4; i++) {
s[i] ^= ek[index + i];
}
}
void aes128_4(uint8_t *in, uint8_t *out, uint32_t * expKey) {
t_state state;
state[0] = word(in[0], in[1], in[2], in[3]);
state[1] = word(in[4], in[5], in[6], in[7]);
state[2] = word(in[8], in[9], in[10], in[11]);
state[3] = word(in[12], in[13], in[14], in[15]);
addRoundKey(state, expKey, 0);
for (int round = 0; round < 9; ++round) {
subBytes(state);
shiftRows(state);
mixColumns(state);
addRoundKey(state, expKey, round * 4 + 4);
}
subBytes(state);
shiftRows(state);
addRoundKey(state, expKey, 10 * 4);
out[0] = wbyte(state[0], 0);
out[1] = wbyte(state[0], 1);
out[2] = wbyte(state[0], 2);
out[3] = wbyte(state[0], 3);
out[4] = wbyte(state[1], 0);
out[5] = wbyte(state[1], 1);
out[6] = wbyte(state[1], 2);
out[7] = wbyte(state[1], 3);
out[8] = wbyte(state[2], 0);
out[9] = wbyte(state[2], 1);
out[10] = wbyte(state[2], 2);
out[11] = wbyte(state[2], 3);
out[12] = wbyte(state[3], 0);
out[13] = wbyte(state[3], 1);
out[14] = wbyte(state[3], 2);
out[15] = wbyte(state[3], 3);
}
//****************************
// MAIN function: AES testing
//****************************
// int main(int argc, char* argv[])
// {
// int test_failed = 0;
// // test subBytes
// printf("Testing subBytes\n");
// {
// t_state state = { 0x01234567,
// 0x89abcdef,
// 0xdeadbeef,
// 0x00112233 };
// t_state res_state = { 0x7c266e85,
// 0xa762bddf,
// 0x1d95aedf,
// 0x638293c3 };
// subBytes(state);
// // printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
// for (int i = 0; i < 4; i++) {
// if (state[i] != res_state[i]) { printf("Mismatch at state[%d]!\n", i); test_failed = 1; }
// }
// }
// // test shiftRows
// printf("Testing shiftRows\n");
// {
// t_state state = { 0x01234567,
// 0x89abcdef,
// 0xdeadbeef,
// 0x00112233 };
// t_state res_state = { 0x00adcd67,
// 0x0111beef,
// 0x892322ef,
// 0xdeab4533 };
// shiftRows(state);
// // printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
// for (int i = 0; i < 4; i++) {
// if (state[i] != res_state[i]) { printf("Mismatch at state[%d]! 0x%08x 0x%08x\n", i, res_state[i], state[i]); test_failed = 1; }
// }
// }
// // test xtime
// printf("Testing xtime\n");
// {
// uint8_t res[256] = { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12,
// 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26,
// 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a,
// 0x3c, 0x3e, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
// 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x62,
// 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76,
// 0x78, 0x7a, 0x7c, 0x7e, 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a,
// 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
// 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2,
// 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, 0xc0, 0xc2, 0xc4, 0xc6,
// 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda,
// 0xdc, 0xde, 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee,
// 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, 0x1b, 0x19,
// 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d,
// 0x03, 0x01, 0x07, 0x05, 0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31,
// 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
// 0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49,
// 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45, 0x7b, 0x79, 0x7f, 0x7d,
// 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61,
// 0x67, 0x65, 0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95,
// 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85, 0xbb, 0xb9,
// 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad,
// 0xa3, 0xa1, 0xa7, 0xa5, 0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1,
// 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
// 0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9,
// 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5 };
// for (uint16_t i = 0; i < 256; i++) {
// //printf("0x%02hhx, ", xtime((uint8_t)i));
// if (xtime((uint8_t)i)!=res[i]) {
// printf("\nMismatch at xtime(0x%02x)! Comparison interrupted.\n", i); test_failed = 1;
// break;
// }
// }
// // puts("");
// }
// // test mixColumns
// printf("Testing mixColumns\n");
// {
// t_state state = { 0x01234567,
// 0x89abcdef,
// 0xdeadbeef,
// 0x00112233 };
// t_state res_state = { 0xcd678923,
// 0x45ef01ab,
// 0x9e69ba6f,
// 0x66334411 };
// mixColumns(state);
// // printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
// // printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", res_state[0], res_state[1], res_state[2], res_state[3]);
// for (int i = 0; i < 4; i++) {
// if (state[i] != res_state[i]) { printf("Mismatch at state[%d]! 0x%08x\n", i, state[i]); test_failed = 1; }
// }
// }
// // test key expansion
// printf("Testing expandKey\n");
// {
// uint8_t key_b[16] = { 0xef, 0xbe, 0xad, 0xde, 0xbe, 0xba, 0xfe, 0xca, 0x0D, 0xF0, 0xAD, 0xBA, 0x00, 0x11, 0x22, 0x33 };
// uint32_t key_w[44] = { 0 /*, ...*/ };
// uint32_t res_key_w[44] = {
// 0xdeadbeef, 0xcafebabe, 0xbaadf00d, 0x33221100,
// 0xbd6e2d6c, 0x779097d2, 0xcd3d67df, 0xfe1f76df,
// 0x23d5ed56, 0x54457a84, 0x99781d5b, 0x67676b84,
// 0x7c50682d, 0x281512a9, 0xb16d0ff2, 0xd60a6476,
// 0x44a60f66, 0x6cb31dcf, 0xddde123d, 0x0bd4764b,
// 0xf78d474e, 0x9b3e5a81, 0x46e048bc, 0x4d343ef7,
// 0x9f6e5fdc, 0x0450055d, 0x42b04de1, 0x0f847316,
// 0xd8180013, 0xdc48054e, 0x9ef848af, 0x917c3bb9,
// 0x8e991071, 0x52d1153f, 0xcc295d90, 0x5d556629,
// 0x2bd5ec59, 0x7904f966, 0xb52da4f6, 0xe878c2df,
// 0xb54e504a, 0xcc4aa92c, 0x79670dda, 0x911fcf05,
// };
// expandKey(key_b, key_w);
// for (int i = 0; i < 44; i++) {
// // printf("0x%08x, ", key_w[i]);
// // if (i % 4 == 3) printf("\n");
// }
// for (int i = 0; i < 44; i++) {
// if (key_w[i] != res_key_w[i]) {
// printf("Mismatch at key_w[%d]! Comparison interrupted.\n", i); test_failed = 1;
// break;
// }
// }
// printf("Testing addRoundKey\n");
// // test AddRoundKey (last round)
// t_state state = { 0x01234567, 0x89abcdef, 0xdeadbeef, 0x00112233 };
// t_state res_state = { 0xb46d152d, 0x45e164c3, 0xa7cab335, 0x910eed36 };
// addRoundKey(state, key_w, 40);
// printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", state[0], state[1], state[2], state[3]);
// for (int i = 0; i < 4; i++) {
// if (state[i] != res_state[i]) { printf("Mismatch at state[%d]!\n", i); }
// }
// }
// // test aes encryption
// printf("Testing aes\n");
// {
// uint8_t key[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
// uint8_t in[16] = { 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89 };
// uint8_t out[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// uint8_t res[16] = { 0xa3, 0x3a, 0xca, 0x68, 0x72, 0xa2, 0x27, 0x74, 0xbf, 0x99, 0xf3, 0x71, 0xaa, 0x99, 0xd2, 0x5a };
// // printf("Key: ");
// // hexprint16(key);
// // puts("");
// // printf("In: ");
// // hexprint16(in);
// // puts("");
// uint32_t expKey[11 * 4];
// expandKey(key, expKey);
// aes128(in, out, expKey);
// // printf("Out: ");
// // hexprint16(out);
// // puts("");
// for (int i = 0; i < 16; i++) {
// if (out[i] != res[i]) { printf("Mismatch at out[%02d]! 0x%02x 0x%02x\n", i, out[i], res[i]); test_failed = 1; }
// }
// }
// if (test_failed) {
// printf("|*********** SOME TEST(S) FAILED ***********|\n");
// printf("Please fix me!\n");
// }
// else {
// printf("============== All tests OK! ===============\n");
// }
// return test_failed;
// }

186
lab04-06_AES_PC/aes_5a.cpp Normal file
View File

@ -0,0 +1,186 @@
#include <stdio.h>
#include <stdint.h>
/* AES-128 simple implementation template and testing */
/*
Author: Ondrej Hladuvka, hladuond@fit.cvut.cz
Template: Jiri Bucek 2017
AES specification:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
namespace aes128_5a {
/* AES Constants */
// forward sbox
const uint8_t SBOX[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // A
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // B
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // C
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // D
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // E
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 // F
};
const uint8_t rCon[12] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
};
/* AES state type */
typedef uint32_t t_state[4];
#define word(a0, a1, a2, a3) ((uint32_t)(a0) | ((uint32_t)(a1) << 8) | ((uint32_t)(a2) << 16) | ((uint32_t)(a3) << 24))
uint8_t wbyte(uint32_t w, int pos) {
return (w >> (pos * 8)) & 0xff;
}
// **************** AES functions ****************
uint32_t subWord(uint32_t w) {
return word(SBOX[wbyte(w, 0)], SBOX[wbyte(w, 1)], SBOX[wbyte(w, 2)], SBOX[wbyte(w, 3)]);
}
void subBytes(t_state s) {
unsigned char* p = reinterpret_cast<unsigned char*>(s);
for (int i = 0; i < 16; ++i)
p[i] = SBOX[p[i]];
}
void shiftRows(t_state s) {
uint32_t tmp[4];
tmp[0] = s[0] & 0x0000FF00;
tmp[1] = s[1] & 0x0000FF00;
tmp[2] = s[2] & 0x0000FF00;
tmp[3] = s[3] & 0x0000FF00;
s[0] = (s[0] & 0xFFFF00FF) | tmp[1];
s[1] = (s[1] & 0xFFFF00FF) | tmp[2];
s[2] = (s[2] & 0xFFFF00FF) | tmp[3];
s[3] = (s[3] & 0xFFFF00FF) | tmp[0];
tmp[0] = s[0] & 0x00FF0000;
tmp[1] = s[1] & 0x00FF0000;
tmp[2] = s[2] & 0x00FF0000;
tmp[3] = s[3] & 0x00FF0000;
s[0] = (s[0] & 0xFF00FFFF) | tmp[2];
s[1] = (s[1] & 0xFF00FFFF) | tmp[3];
s[2] = (s[2] & 0xFF00FFFF) | tmp[0];
s[3] = (s[3] & 0xFF00FFFF) | tmp[1];
tmp[0] = s[0] & 0xFF000000;
tmp[1] = s[1] & 0xFF000000;
tmp[2] = s[2] & 0xFF000000;
tmp[3] = s[3] & 0xFF000000;
s[0] = (s[0] & 0x00FFFFFF) | tmp[3];
s[1] = (s[1] & 0x00FFFFFF) | tmp[0];
s[2] = (s[2] & 0x00FFFFFF) | tmp[1];
s[3] = (s[3] & 0x00FFFFFF) | tmp[2];
}
uint8_t xtime(uint8_t c) {
uint8_t m = ((c & 0x80) >> 7) * 0x1B;
return (c << 1) ^ m;
}
void mixColumns(t_state s) {
for (int i = 0; i < 4; i++) {
uint8_t a0 = wbyte(s[i], 0);
uint8_t a1 = wbyte(s[i], 1);
uint8_t a2 = wbyte(s[i], 2);
uint8_t a3 = wbyte(s[i], 3);
uint8_t r0 = xtime(a0) ^ xtime(a1) ^ a1 ^ a2 ^ a3;
uint8_t r1 = xtime(a1) ^ xtime(a2) ^ a2 ^ a3 ^ a0;
uint8_t r2 = xtime(a2) ^ xtime(a3) ^ a3 ^ a0 ^ a1;
uint8_t r3 = xtime(a3) ^ xtime(a0) ^ a0 ^ a1 ^ a2;
s[i] = word(r0, r1, r2, r3);
}
}
/*
* Key expansion from 128bits (4*32b)
* to 11 round keys (11*4*32b)
* each round key is 4*32b
*/
void expandKey(uint8_t k[16], uint32_t ek[44]) {
for (int i = 0; i < 4; i++) {
ek[i] = word(k[4*i], k[4*i + 1], k[4*i + 2], k[4*i + 3]);
}
for (int i = 4; i < 44; i++) {
uint32_t temp = ek[i - 1];
if (i % 4 == 0) {
// RotWord, SubWord, and XOR with Rcon
temp = subWord((temp >> 8) | (temp << 24)) ^ rCon[i / 4];
}
ek[i] = ek[i - 4] ^ temp;
}
}
/* Adding expanded round key (prepared before) */
void addRoundKey(t_state s, uint32_t ek[], short index) {
for (int i = 0; i < 4; i++) {
s[i] ^= ek[index + i];
}
}
void aes128_5a(uint8_t *in, uint8_t *out, uint32_t * expKey) {
t_state state;
state[0] = word(in[0], in[1], in[2], in[3]);
state[1] = word(in[4], in[5], in[6], in[7]);
state[2] = word(in[8], in[9], in[10], in[11]);
state[3] = word(in[12], in[13], in[14], in[15]);
addRoundKey(state, expKey, 0);
for (int round = 0; round < 9; ++round) {
subBytes(state);
shiftRows(state);
mixColumns(state);
addRoundKey(state, expKey, round * 4 + 4);
}
subBytes(state);
shiftRows(state);
addRoundKey(state, expKey, 10 * 4);
out[0] = wbyte(state[0], 0);
out[1] = wbyte(state[0], 1);
out[2] = wbyte(state[0], 2);
out[3] = wbyte(state[0], 3);
out[4] = wbyte(state[1], 0);
out[5] = wbyte(state[1], 1);
out[6] = wbyte(state[1], 2);
out[7] = wbyte(state[1], 3);
out[8] = wbyte(state[2], 0);
out[9] = wbyte(state[2], 1);
out[10] = wbyte(state[2], 2);
out[11] = wbyte(state[2], 3);
out[12] = wbyte(state[3], 0);
out[13] = wbyte(state[3], 1);
out[14] = wbyte(state[3], 2);
out[15] = wbyte(state[3], 3);
}
}

View File

@ -4,51 +4,215 @@
#include <openssl/rand.h>
#include <cstring>
#include <chrono>
#include "aes.cpp"
#include <immintrin.h>
#include <memory>
#include <type_traits>
#include "aes_4.cpp"
#include "aes_5a.cpp"
// AES constants
constexpr size_t blockSize = 16;
constexpr size_t keySize = 16;
// Test constants
constexpr size_t numTests = 1'000'000;
constexpr size_t payloadSize = numTests * blockSize;
using TestTimeUnit = std::milli;
using CycleTimeUnit = std::nano;
void xor_into_128bit_u(uint8_t *a, uint8_t *b) {
__m128i vec_a = _mm_loadu_si128((__m128i*)a);
__m128i vec_b = _mm_loadu_si128((__m128i*)b);
__m128i vec_result = _mm_xor_si128(vec_a, vec_b);
_mm_storeu_si128((__m128i*)a, vec_result);
}
// aligned version
void xor_128bit(__m128i *a, __m128i *b, __m128i *c) {
__m128i vec_a = _mm_load_si128(a);
__m128i vec_b = _mm_load_si128(b);
__m128i vec_result = _mm_xor_si128(vec_a, vec_b);
_mm_store_si128(c, vec_result);
}
void mov_128bit(__m128i *a, __m128i *b) {
__m128i tmp = _mm_load_si128(a);
_mm_store_si128(b, tmp);
}
void test(void (*aes)(uint8_t *in, uint8_t *out, uint32_t *expKey), uint8_t *in, uint8_t *refOut,
uint32_t *expandedKey, uint8_t *iv,
const std::string& name) {
std::cout << "\n\ntesting: " << name << '\n';
uint8_t* tmpBlock(static_cast<uint8_t*>(std::aligned_alloc(blockSize, blockSize)));
uint8_t* outBuf(static_cast<uint8_t*>(std::aligned_alloc(blockSize, payloadSize)));
mov_128bit(reinterpret_cast<__m128i*>(iv), reinterpret_cast<__m128i*>(tmpBlock));
uint64_t cycles = __rdtsc();
auto start = std::chrono::high_resolution_clock::now();
for (size_t t = 0; t < numTests; ++t) {
aes(tmpBlock, tmpBlock, expandedKey);
xor_128bit(reinterpret_cast<__m128i*>(tmpBlock),
reinterpret_cast<__m128i*>(in + blockSize * t),
reinterpret_cast<__m128i*>(outBuf + blockSize * t));
}
cycles = __rdtsc() - cycles;
auto end = std::chrono::high_resolution_clock::now();
if (std::memcmp(outBuf, refOut, payloadSize)) std::cout << "test failed!\n";
else std::cout << "test passed\n";
std::chrono::duration<double, CycleTimeUnit> time = end - start;
double timeAVG = time.count() / numTests;
std::cout << "time :" << time.count()/std::ratio_divide<CycleTimeUnit, TestTimeUnit>::den << "ms\navg time: " << timeAVG << "ns\navg cpu cycles: " << cycles/numTests << std::endl;
std::free(tmpBlock);
std::free(outBuf);
}
int main() {
const int numTests = 1000000;
const int blockSize = 16;
const int keySize = 16;
uint8_t key[keySize];
uint8_t opensslOutput[blockSize];
uint8_t myOutput[blockSize];
uint8_t input[blockSize];
uint8_t iv[blockSize];
uint32_t expandedKey[44];
std::chrono::duration<double, std::micro> opensslTime(0);
std::chrono::duration<double, std::micro> myTime(0);
AES_KEY opensslKey;
for (int test = 0; test < numTests; ++test) {
// Generate random key and input data using OpenSSL's random generator
if (!RAND_bytes(key, keySize) || !RAND_bytes(input, blockSize)) {
std::cerr << "Failed to generate random data using OpenSSL." << std::endl;
return 1;
}
uint8_t* input(static_cast<uint8_t*>(std::aligned_alloc(blockSize, payloadSize)));
uint8_t* opensslOutput(static_cast<uint8_t*>(std::aligned_alloc(blockSize, payloadSize)));
auto start = std::chrono::high_resolution_clock::now();
RAND_bytes(key, keySize);
RAND_bytes(iv, blockSize);
RAND_bytes(input, payloadSize);
// OpenSSL
std::cout << "testing: OpenSSL\n";
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
AES_set_encrypt_key(key, 128, &opensslKey);
AES_encrypt(input, opensslOutput, &opensslKey);
auto end = std::chrono::high_resolution_clock::now();
opensslTime += end - start;
start = std::chrono::high_resolution_clock::now();
expandKey(key, expandedKey);
aes128(input, myOutput, expandedKey);
end = std::chrono::high_resolution_clock::now();
myTime += end - start;
if (std::memcmp(opensslOutput, myOutput, blockSize))
std::cerr << "Mismatch at test " << test + 1 << "!" << std::endl;
uint8_t* tmpBlock(static_cast<uint8_t*>(std::aligned_alloc(blockSize, blockSize)));
mov_128bit(reinterpret_cast<__m128i*>(iv), reinterpret_cast<__m128i*>(tmpBlock));
auto start = std::chrono::high_resolution_clock::now();
size_t opensslCycles = __rdtsc();
for (int test = 0; test < numTests; ++test) {
AES_encrypt(tmpBlock, tmpBlock, &opensslKey);
xor_128bit(reinterpret_cast<__m128i*>(tmpBlock),
reinterpret_cast<__m128i*>(input + blockSize * test),
reinterpret_cast<__m128i*>(opensslOutput + blockSize * test));
}
double avgOpenSSLTime = opensslTime.count() / numTests;
double avgCustomTime = myTime.count() / numTests;
opensslCycles = __rdtsc() - opensslCycles;
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double, std::nano> opensslTime = end - start;
double timeAVG = opensslTime.count() / numTests;
std::cout << "avg time: " << timeAVG << "ns\navg cycles: " << opensslCycles/numTests << std::endl;
std::free(tmpBlock);
#pragma GCC diagnostic pop
std::cout << "avg openssl time: " << avgOpenSSLTime << "us" << std::endl;
std::cout << "avg my time: " << avgCustomTime << "us" << std::endl;
expandKey(key, expandedKey);
test(aes128_4, input, opensslOutput, expandedKey, iv, "My original implementation");
test(aes128_5a::aes128_5a, input, opensslOutput, expandedKey, iv, "My original implementation");
// test(aes128, input, opensslOutput, expandedKey, iv, "My original implementation");
std::free(input);
std::free(opensslOutput);
return 0;
}
// int main() {
// uint8_t key[keySize];
// uint8_t* opensslOutput = new uint8_t[payloadSize];
// uint8_t* myOutput = new uint8_t[payloadSize];
// uint8_t* myOptimOutput = new uint8_t[payloadSize];
// uint8_t* opensslInput = new uint8_t[payloadSize];
// uint8_t* myInput = new uint8_t[payloadSize];
// uint8_t* myOptimInput = new uint8_t[payloadSize];
// std::unique_ptr<uint8_t> iv(static_cast<uint8_t*>(std::aligned_alloc(blockSize, blockSize)));
// uint32_t expandedKey[44];
// std::chrono::duration<double, std::nano> opensslTime(0);
// std::chrono::duration<double, std::nano> myTime(0);
// std::chrono::duration<double, std::nano> myOptimTime(0);
// uint64_t opensslCycles;
// uint64_t myCycles;
// uint64_t myOptimCycles;
// AES_KEY opensslKey;
// RAND_bytes(key, keySize);
// RAND_bytes(opensslInput, payloadSize);
// RAND_bytes(iv.get(), blockSize);
// xor_into_128bit_u(opensslInput, iv.get());
// memcpy(myInput, opensslInput, payloadSize);
// memcpy(myOptimInput, opensslInput, payloadSize);
// expandKey(key, expandedKey);
// #pragma GCC diagnostic push
// #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
// AES_set_encrypt_key(key, 128, &opensslKey);
// // OPENSSL
// auto start = std::chrono::high_resolution_clock::now();
// opensslCycles = __rdtsc();
// for (int test = 0; test < numTests; ++test) {
// AES_encrypt(opensslInput + blockSize * test, opensslOutput + blockSize * test, &opensslKey);
// xor_into_128bit_u(opensslInput + blockSize * test, opensslOutput + blockSize * test);
// }
// #pragma GCC diagnostic pop
// opensslCycles = __rdtsc() - opensslCycles;
// auto end = std::chrono::high_resolution_clock::now();
// opensslTime += end - start;
// // My 4
// start = std::chrono::high_resolution_clock::now();
// myCycles = __rdtsc();
// for (int test = 0; test < numTests; ++test) {
// aes128(myInput + blockSize * test, myOutput + blockSize * test, expandedKey);
// xor_into_128bit_u(myInput + blockSize * test, myOutput + blockSize * test);
// }
// myCycles = __rdtsc() - myCycles;
// end = std::chrono::high_resolution_clock::now();
// myTime += end - start;
// // My 5a
// start = std::chrono::high_resolution_clock::now();
// myOptimCycles = __rdtsc();
// for (int test = 0; test < numTests; ++test) {
// aes128(myOptimInput + blockSize * test, myOptimOutput + blockSize * test, expandedKey);
// xor_into_128bit_u(myOptimInput + blockSize * test, myOptimOutput + blockSize * test);
// }
// myOptimCycles = __rdtsc() - myOptimCycles;
// end = std::chrono::high_resolution_clock::now();
// myOptimTime += end - start;
// // Verify
// if (std::memcmp(myOptimOutput, opensslOutput, payloadSize)) {
// std::cout << "Output differs\n";
// for (int i = 0; i < 16; ++i)
// std::cout << (int)myOutput[i] << "!=" << (int)opensslOutput[i] << '\n';
// } else {
// std::cout << "Output same\n";
// }
// // Print perf stats
// double opensslTimeAVG = opensslTime.count() / numTests;
// double myTimeAVG = myTime.count() / numTests;
// double myOptimTimeAVG = myOptimTime.count() / numTests;
// std::cout << "avg openssl time: " << opensslTimeAVG << "ns, cycles: " << opensslCycles/numTests << std::endl;
// std::cout << "avg my time: " << myTimeAVG << "ns, cycles: " << myCycles/numTests << std::endl;
// std::cout << "avg my optim time: " << myOptimTimeAVG << "ns, cycles: " << myOptimCycles/numTests << std::endl;
// return opensslOutput[0] ^ myOutput[0] ^ myOptimOutput[0];
// }