#include #include /* AES-128 simple implementation template and testing */ /* Author: Ondrej Hladuvka, hladuond@fit.cvut.cz Template: Jiri Bucek 2017 AES specification: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf */ /* AES Constants */ // forward sbox const uint8_t SBOX[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // A 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // B 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // C 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // D 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // E 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 // F }; const uint8_t rCon[12] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, }; /* AES state type */ typedef uint32_t t_state[4]; /* Helper functions */ void hexprint16(uint8_t *p) { for (int i = 0; i < 16; i++) printf("%02hhx ", p[i]); puts(""); } void hexprintw(uint32_t w) { for (int i = 0; i < 32; i += 8) printf("%02hhx ", (w >> i) & 0xffU); } void hexprintws(uint32_t * p, int cnt) { for (int i = 0; i < cnt; i++) hexprintw(p[i]); puts(""); } void printstate(t_state s) { hexprintw(s[0]); hexprintw(s[1]); hexprintw(s[2]); hexprintw(s[3]); puts(""); } uint32_t word(uint8_t a0, uint8_t a1, uint8_t a2, uint8_t a3) { return a0 | (uint32_t)a1 << 8 | (uint32_t)a2 << 16 | (uint32_t)a3 << 24; } uint8_t wbyte(uint32_t w, int pos) { return (w >> (pos * 8)) & 0xff; } // **************** AES functions **************** uint32_t subWord(uint32_t w) { return word(SBOX[wbyte(w, 0)], SBOX[wbyte(w, 1)], SBOX[wbyte(w, 2)], SBOX[wbyte(w, 3)]); } void subBytes(t_state s) { unsigned char* p = reinterpret_cast(s); for (int i = 0; i < 16; ++i) p[i] = SBOX[p[i]]; } void shiftRows(t_state s) { uint32_t tmp[4]; tmp[0] = s[0] & 0x0000FF00; tmp[1] = s[1] & 0x0000FF00; tmp[2] = s[2] & 0x0000FF00; tmp[3] = s[3] & 0x0000FF00; s[0] = (s[0] & 0xFFFF00FF) | tmp[1]; s[1] = (s[1] & 0xFFFF00FF) | tmp[2]; s[2] = (s[2] & 0xFFFF00FF) | tmp[3]; s[3] = (s[3] & 0xFFFF00FF) | tmp[0]; tmp[0] = s[0] & 0x00FF0000; tmp[1] = s[1] & 0x00FF0000; tmp[2] = s[2] & 0x00FF0000; tmp[3] = s[3] & 0x00FF0000; s[0] = (s[0] & 0xFF00FFFF) | tmp[2]; s[1] = (s[1] & 0xFF00FFFF) | tmp[3]; s[2] = (s[2] & 0xFF00FFFF) | tmp[0]; s[3] = (s[3] & 0xFF00FFFF) | tmp[1]; tmp[0] = s[0] & 0xFF000000; tmp[1] = s[1] & 0xFF000000; tmp[2] = s[2] & 0xFF000000; tmp[3] = s[3] & 0xFF000000; s[0] = (s[0] & 0x00FFFFFF) | tmp[3]; s[1] = (s[1] & 0x00FFFFFF) | tmp[0]; s[2] = (s[2] & 0x00FFFFFF) | tmp[1]; s[3] = (s[3] & 0x00FFFFFF) | tmp[2]; } uint8_t xtime(uint8_t c) { uint8_t m = ((c & 0x80) >> 7) * 0x1B; return (c << 1) ^ m; } void mixColumns(t_state s) { for (int i = 0; i < 4; i++) { uint8_t a0 = wbyte(s[i], 0); uint8_t a1 = wbyte(s[i], 1); uint8_t a2 = wbyte(s[i], 2); uint8_t a3 = wbyte(s[i], 3); uint8_t r0 = xtime(a0) ^ xtime(a1) ^ a1 ^ a2 ^ a3; uint8_t r1 = xtime(a1) ^ xtime(a2) ^ a2 ^ a3 ^ a0; uint8_t r2 = xtime(a2) ^ xtime(a3) ^ a3 ^ a0 ^ a1; uint8_t r3 = xtime(a3) ^ xtime(a0) ^ a0 ^ a1 ^ a2; s[i] = word(r0, r1, r2, r3); } } /* * Key expansion from 128bits (4*32b) * to 11 round keys (11*4*32b) * each round key is 4*32b */ void expandKey(uint8_t k[16], uint32_t ek[44]) { for (int i = 0; i < 4; i++) { ek[i] = word(k[4*i], k[4*i + 1], k[4*i + 2], k[4*i + 3]); } for (int i = 4; i < 44; i++) { uint32_t temp = ek[i - 1]; if (i % 4 == 0) { // RotWord, SubWord, and XOR with Rcon temp = subWord((temp >> 8) | (temp << 24)) ^ rCon[i / 4]; } ek[i] = ek[i - 4] ^ temp; } } /* Adding expanded round key (prepared before) */ void addRoundKey(t_state s, uint32_t ek[], short index) { for (int i = 0; i < 4; i++) { s[i] ^= ek[index + i]; } } void aes128_4(uint8_t *in, uint8_t *out, uint32_t * expKey) { t_state state; state[0] = word(in[0], in[1], in[2], in[3]); state[1] = word(in[4], in[5], in[6], in[7]); state[2] = word(in[8], in[9], in[10], in[11]); state[3] = word(in[12], in[13], in[14], in[15]); addRoundKey(state, expKey, 0); for (int round = 0; round < 9; ++round) { subBytes(state); shiftRows(state); mixColumns(state); addRoundKey(state, expKey, round * 4 + 4); } subBytes(state); shiftRows(state); addRoundKey(state, expKey, 10 * 4); out[0] = wbyte(state[0], 0); out[1] = wbyte(state[0], 1); out[2] = wbyte(state[0], 2); out[3] = wbyte(state[0], 3); out[4] = wbyte(state[1], 0); out[5] = wbyte(state[1], 1); out[6] = wbyte(state[1], 2); out[7] = wbyte(state[1], 3); out[8] = wbyte(state[2], 0); out[9] = wbyte(state[2], 1); out[10] = wbyte(state[2], 2); out[11] = wbyte(state[2], 3); out[12] = wbyte(state[3], 0); out[13] = wbyte(state[3], 1); out[14] = wbyte(state[3], 2); out[15] = wbyte(state[3], 3); }