Compare commits

...

11 Commits

Author SHA1 Message Date
Ondrej Hladuvka 4889a5fdfe task6 finished 2025-05-21 21:13:58 +03:00
Ondrej Hladuvka 7fb97bcab7 lab6 fixpoint 2025-05-20 16:05:29 +03:00
Ondrej Hladuvka 3b38f6bfc4 lab5 finish 2025-05-19 11:00:10 +03:00
Ondrej Hladuvka 91e85280d5 lab5 done 2025-05-13 18:32:44 +03:00
Ondrej Hladuvka 48fd2e6aed Merge branch 'main' into dev 2025-05-13 17:50:32 +03:00
Ondrej Hladuvka 609fb0bb76 lab5 2025-05-13 17:43:30 +03:00
AntonJ 47d08fa8f6 Added Lab6 and neccessary files in common/ 2025-05-12 14:43:46 +03:00
Ondrej Hladuvka 71e58c6ea9 Merge branch 'main' into dev 2025-05-07 14:38:41 +03:00
Ondrej Hladuvka 5a0ceba79a lab 3 fix 2025-05-07 14:37:59 +03:00
Ondrej Hladuvka 1b89bef1dd lab 4 finished 2025-05-07 14:17:48 +03:00
AntonJ 7779553efd Added Lab5 and neccessary files in common/ 2025-05-05 16:37:04 +03:00
23 changed files with 1216 additions and 27 deletions

View File

@ -2,8 +2,6 @@
#include "inc/msp432p401r.h"
#define BUMP_PINS 0b11101101
void BumpInit(void) {
// Port 4 pins 0, 2, 3, 5, 6, 7
// and enables internal resistors
@ -15,5 +13,5 @@ void BumpInit(void) {
uint8_t BumpRead(void) {
// write this as part of Lab 2
return P4->IN & BUMP_PINS;
return P4->IN;
}

View File

@ -3,6 +3,7 @@
#include <stdint.h>
#define BUMP_PINS 0b11101101
// Set port pins Port 4.0, 4.2, 4.3, 4.5, 4.6 and 4.7 and enable internal resistors as needed
void BumpInit(void);

View File

@ -19,4 +19,34 @@ uint32_t __attribute__((naked)) CPU_cpsie(void)
// naked attribute).
//
return(ret);
}
}
uint32_t __attribute__((naked)) CPU_cpsid(void)
{
uint32_t ret;
//
// Read PRIMASK and disable interrupts.
//
__asm(" mrs r0, PRIMASK\n"
" cpsid i\n"
" bx lr\n"
: "=r" (ret));
//
// The return is handled in the inline assembly, but the compiler will
// still complain if there is not an explicit return here (despite the fact
// that this does not result in any code being produced because of the
// naked attribute).
//
return(ret);
}
void __attribute__((naked)) CPU_wfi(void)
{
//
// Wait for the next interrupt.
//
__asm(" wfi\n"
" bx lr\n");
}

View File

@ -4,5 +4,7 @@
#include <stdint.h>
uint32_t CPU_cpsie(void);
uint32_t CPU_cpsid(void);
void CPU_wfi(void);
#endif /* CPU_H */

79
common/input_capture.c Normal file
View File

@ -0,0 +1,79 @@
#include "input_capture.h"
#include "inc/msp432p401r.h"
void (*capture_task)(uint16_t time);
// Initialize Timer A0 in edge time mode to request interrupts on
// the rising edge of P7.3 (TA0CCP0). The interrupt service routine
// acknowledges the interrupt and calls a user function.
void TimerA0CaptureInit(void (*task)(uint16_t time)) {
capture_task = task;
P7->SEL0 |= 0x08;
P7->SEL1 &= ~0x08; // configure P7.3 as TA0CCP0
P7->DIR &= ~0x08;
TIMER_A0->CTL &= ~0x30; // halt Timer A0
TIMER_A0->CTL = 0x200; // SMCLK
TIMER_A0->CCTL[0] = 0x4910; // capture on rising edge, synchronous capture, capture mode, interrupt enabled
TIMER_A0->EX0 &= ~0x7; // input clock divider /1
NVIC->IP[2] = (NVIC->IP[2] & 0xFFFFFF00) | 0x00000002; // priority 2
// interrupts enabled in the main program after all devices initialized
NVIC->ISER[0] = 0x100; // enable interrupt 8 in NVIC
TIMER_A0->CTL |= 0x24; // reset and start Timer A0 in continuous up mode
}
void TA0_0_IRQHandler(void) {
TIMER_A0->CCTL[0] &= ~0x1; // acknowledge capture/compare interrupt
capture_task(TIMER_A0->CCR[0]); // execute user task
}
// Left Encoder A connected to P10.5 (J5)
// Right Encoder A connected to P10.4 (J5)
// user function, time is up-counting timer value when edge occurred in units of 0.083 usec
// called when P10.4/.5 (TA3CCP0/1) edge occurs
void (*capture_task0)(uint16_t time);
void (*capture_task1)(uint16_t time);
// Initialize Timer A3 in edge time mode to request interrupts on
// the rising edges of P10.4 (TA3CCP0) and P10.5 (TA3CCP1).
// Interrupt service routines acknowledge the interrupt and call a user function.
// Assumes: low-speed subsystem master clock is 12 MHz
void TimerA3CaptureInit(void (*task0)(uint16_t time),
void (*task1)(uint16_t time)) {
capture_task0 = task0;
capture_task1 = task1;
P10->SEL0 |= 0x30; // Set SEL0 for bits 4 and 5
P10->SEL1 &= ~0x30; // Clear SEL1 for bits 4 and 5
P10->DIR &= ~0x30; // Set as inputs
TIMER_A3->CTL &= ~0x30; // halt Timer A3
TIMER_A3->CTL = 0x200; // SMCLK
TIMER_A3->CCTL[0] = 0x4910; // rising, sync, capture, interrupt
TIMER_A3->CCTL[1] = 0x4910;
TIMER_A3->EX0 &= ~0x7; // input clock divider /1
NVIC->IP[3] = (NVIC->IP[3] & 0xFF0000FF) | 0x00020300; // priority 2 and 3
NVIC->ISER[0] = (1 << 14) | (1 << 15); // enable 14 and 15
// Start Timer A3 in continuous mode with clear
TIMER_A3->CTL |= 0x0024; // TACLR | MC__CONTINUOUS
}
// The rising edge of P10.4 will cause an interrupt
void TA3_0_IRQHandler(void) {
TIMER_A3->CCTL[0] &= ~0x0001; // ack
capture_task0(TIMER_A3->CCR[0]);
}
// The rising edge of P10.5 will cause an interrupt
void TA3_N_IRQHandler(void) {
TIMER_A3->CCTL[1] &= ~0x0001; // ack
capture_task1(TIMER_A3->CCR[1]);
}

9
common/input_capture.h Normal file
View File

@ -0,0 +1,9 @@
#ifndef INPUT_CAPTURE_H
#define INPUT_CAPTURE_H
#include <stdint.h>
void TimerA3CaptureInit(void (*task0)(uint16_t time),
void (*task1)(uint16_t time));
#endif /* INPUT_CAPTURE */

113
common/motor.c Normal file
View File

@ -0,0 +1,113 @@
#include "motor.h"
#include "pwm.h"
#include "inc/msp432p401r.h"
#undef BIT0
#undef BIT1
#undef BIT2
#undef BIT3
#undef BIT4
#undef BIT5
#undef BIT6
#undef BIT7
#define BIT0 (uint8_t)(0x01)
#define BIT1 (uint8_t)(0x02)
#define BIT2 (uint8_t)(0x04)
#define BIT3 (uint8_t)(0x08)
#define BIT4 (uint8_t)(0x10)
#define BIT5 (uint8_t)(0x20)
#define BIT6 (uint8_t)(0x40)
#define BIT7 (uint8_t)(0x80)
// duty := H/(H+L) = H/10000
// H+L is always 10 000 microsecond
// Left motor (PH) direction connected to P5.4 (J3.29)
#define LEFT_DIR_PIN BIT4 // P5.4
// Right motor (PH) direction connected to P5.5 (J3.30)
#define RIGHT_DIR_PIN BIT5 // P5.5
// Left motor (EN) PWM connected to P2.7/TA0CCP4 (J4.40)
#define LEFT_PWM_PIN BIT7 // P2.7
// Right motor (EN) PWM connected to P2.6/TA0CCP3 (J4.39)
#define RIGHT_PWM_PIN BIT6 // P2.6
// Left motor (nSLEEP) enable connected to P3.7 (J4.31)
#define LEFT_SLEEP_PIN BIT7 // P3.7
// Right motor (nSLEEP) enable connected to P3.6 (J2.11)
#define RIGHT_SLEEP_PIN BIT6 // P3.6
// Initializes the 6 GPIO output lines and puts driver to sleep
void MotorInit(void) {
// 1. Configure all motor control pins as outputs
// P5.4 (Left DIR), P5.5 (Right DIR)
P5->SEL0 &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN); // GPIO function
P5->SEL1 &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN);
P5->DIR |= (LEFT_DIR_PIN | RIGHT_DIR_PIN); // Output direction
// P3.6 (Right SLEEP), P3.7 (Left SLEEP)
P3->SEL0 &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // GPIO function
P3->SEL1 &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN);
P3->DIR |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // Output direction
// 2. Initial state: disable motors
P3->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // SLEEP pins low - DRV8838 disabled
}
// Stop the motors, power down the drivers, and
// set the PWM speed control to 0% duty cycle.
void MotorStop(void) {
P3->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // SLEEP pins low
P2->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // EN pins low
SetPWMDutyLeftMotor(0);
SetPWMDutyRightMotor(0);
}
// Left and right wheels forward with the given duty cycles.
// Duty cycle is 0 to 14,998.
void MotorForward(uint16_t left_duty, uint16_t right_duty) {
P5->OUT &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN); // set direction - PH low
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // wake up motors
// P2->OUT |= (LEFT_PWM_PIN | RIGHT_PWM_PIN);
SetPWMDutyRightMotor(right_duty);
SetPWMDutyLeftMotor(left_duty);
}
// Left and right wheels backward with the given duty cycles.
// Duty cycle is 0 to 14,998.
void MotorBackward(uint16_t left_duty, uint16_t right_duty) {
P5->OUT |= (LEFT_DIR_PIN | RIGHT_DIR_PIN); // set direction - PH high
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // wake up motors
// P2->OUT |= (LEFT_PWM_PIN | RIGHT_PWM_PIN);
SetPWMDutyRightMotor(right_duty);
SetPWMDutyLeftMotor(left_duty);
}
// Left wheel backward, right wheel forward with the given duty cycles.
// Duty cycle is 0 to 14,998.
void MotorLeft(uint16_t left_duty, uint16_t right_duty) {
P5->OUT &= ~(RIGHT_DIR_PIN); // set direction forward
P5->OUT |= LEFT_DIR_PIN; // set direction backward
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // wake up motors
SetPWMDutyRightMotor(right_duty);
SetPWMDutyLeftMotor(left_duty);
}
// Left wheel forward, right wheel backward with the given duty cycles.
// Duty cycle is 0 to 14,998.
void MotorRight(uint16_t left_duty, uint16_t right_duty) {
P5->OUT &= ~(LEFT_DIR_PIN); // set direction forward
P5->OUT |= RIGHT_DIR_PIN; // set direction backward
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // wake up motors
SetPWMDutyRightMotor(right_duty);
SetPWMDutyLeftMotor(left_duty);
}

13
common/motor.h Normal file
View File

@ -0,0 +1,13 @@
#ifndef MOTOR_H
#define MOTOR_H
#include <stdint.h>
void MotorInit(void);
void MotorStop(void);
void MotorForward(uint16_t left_duty, uint16_t right_duty);
void MotorBackward(uint16_t left_duty, uint16_t right_duty);
void MotorLeft(uint16_t left_duty, uint16_t right_duty);
void MotorRight(uint16_t left_duty, uint16_t right_duty);
#endif /* MOTOR_H */

145
common/motor_hw_pwm.c Normal file
View File

@ -0,0 +1,145 @@
#include <stdbool.h>
#include "motor_simple.h"
#include "bump.h"
#include "systick.h"
#include "inc/msp432p401r.h"
#define BIT0 (uint8_t)(0x01)
#define BIT1 (uint8_t)(0x02)
#define BIT2 (uint8_t)(0x04)
#define BIT3 (uint8_t)(0x08)
#define BIT4 (uint8_t)(0x10)
#define BIT5 (uint8_t)(0x20)
#define BIT6 (uint8_t)(0x40)
#define BIT7 (uint8_t)(0x80)
// Left motor (PH) direction connected to P5.4 (J3.29)
#define LEFT_DIR_PIN BIT4 // P5.4
// Right motor (PH) direction connected to P5.5 (J3.30)
#define RIGHT_DIR_PIN BIT5 // P5.5
// Left motor (EN) PWM connected to P2.7/TA0CCP4 (J4.40)
#define LEFT_PWM_PIN BIT7 // P2.7
// Right motor (EN) PWM connected to P2.6/TA0CCP3 (J4.39)
#define RIGHT_PWM_PIN BIT6 // P2.6
// Left motor (nSLEEP) enable connected to P3.7 (J4.31)
#define LEFT_SLEEP_PIN BIT7 // P3.7
// Right motor (nSLEEP) enable connected to P3.6 (J2.11)
#define RIGHT_SLEEP_PIN BIT6 // P3.6
// Initializes the 6 GPIO output lines and puts driver to sleep
void MotorInit(void) {
P5->SEL0 &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN); // GPIO enable
P5->SEL1 &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN);
P5->DIR |= (LEFT_DIR_PIN | RIGHT_DIR_PIN); // Output direction
P5->OUT &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN); // Initialize low
// motor enable pins - P2.6 P2.7
P2->SEL0 |= (LEFT_PWM_PIN | RIGHT_PWM_PIN); // TimerA function
P2->SEL1 &= ~(LEFT_PWM_PIN | RIGHT_PWM_PIN);
P2->DIR |= (LEFT_PWM_PIN | RIGHT_PWM_PIN); // Output direction
// motor sleep pins - P3.6 P3.7
P3->SEL0 &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // GPIO enable
P3->SEL1 &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN);
P3->DIR |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // Output direction
P3->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // Initialize low (sleep mode)
}
// Stops both motors, puts driver to sleep
void MotorStop(void) {
P2->OUT &= ~0xC0; // off
P3->OUT &= ~0xC0; // low current sleep mode
}
// Drives both motors forward at duty (100 to 9900)
// Runs for time duration, and then stops
// Stop the motors and return if any bumper switch is active
void MotorForward(uint16_t duty, uint32_t times_10ms) {
// set direction - PH low
P5->OUT &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN);
// wake up motors
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN);
// Set PWM duty cycle
TIMER_A0->CCR[3] = duty; // Right motor (P2.6/TA0.3)
TIMER_A0->CCR[4] = duty; // Left motor (P2.7/TA0.4)
while(times_10ms--) {
Delay10ms(1);
}
MotorStop();
}
// Drives both motors backward at duty (100 to 9900)
// Runs for time duration, and then stops
// Runs even if any bumper switch is active
void MotorBackward(uint16_t duty, uint32_t times_10ms) {
// set direction - PH high
P5->OUT |= (LEFT_DIR_PIN | RIGHT_DIR_PIN);
// wake up motors
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN);
// Set PWM duty cycle
TIMER_A0->CCR[3] = duty; // Right motor (P2.6/TA0.3)
TIMER_A0->CCR[4] = duty; // Left motor (P2.7/TA0.4)
while(times_10ms--) {
Delay10ms(1);
}
MotorStop();
}
// Drives just the left motor forward at duty (100 to 9900)
// Right motor is stopped (sleeping)
// Runs for time duration, and then stops
// Stop the motor and return if any bumper switch is active
void MotorLeft(uint16_t duty, uint32_t times_10ms) {
// set direction - PH low
P5->OUT &= ~LEFT_DIR_PIN;
// wake up motors
P3->OUT = (P3->OUT & ~RIGHT_SLEEP_PIN) | LEFT_SLEEP_PIN;
// Set PWM duty cycle
TIMER_A0->CCR[3] = 0; // Right motor off
TIMER_A0->CCR[4] = duty; // Left motor on
while(times_10ms--) {
Delay10ms(1);
}
MotorStop();
}
// Drives just the right motor forward at duty (100 to 9900)
// Left motor is stopped (sleeping)
// Runs for time duration, and then stops
// Stop the motor and return if any bumper switch is active
void MotorRight(uint16_t duty, uint32_t times_10ms) {
// set direction - PH low
P5->OUT &= ~RIGHT_DIR_PIN;
// wake up motors
P3->OUT = (P3->OUT & ~LEFT_SLEEP_PIN) | RIGHT_SLEEP_PIN;
// Set PWM duty cycle
TIMER_A0->CCR[3] = duty; // Right motor off
TIMER_A0->CCR[4] = 0; // Left motor on
while(times_10ms--) {
Delay10ms(1);
}
MotorStop();
}

View File

@ -6,38 +6,116 @@
#include "inc/msp432p401r.h"
// Left motor (PH) direction connected to P5.4 (J3.29)
// Left motor (EN) PWM connected to P2.7/TA0CCP4 (J4.40)
// Left motor (nSLEEP) enable connected to P3.7 (J4.31)
#undef BIT0
#undef BIT1
#undef BIT2
#undef BIT3
#undef BIT4
#undef BIT5
#undef BIT6
#undef BIT7
#define BIT0 (uint8_t)(0x01)
#define BIT1 (uint8_t)(0x02)
#define BIT2 (uint8_t)(0x04)
#define BIT3 (uint8_t)(0x08)
#define BIT4 (uint8_t)(0x10)
#define BIT5 (uint8_t)(0x20)
#define BIT6 (uint8_t)(0x40)
#define BIT7 (uint8_t)(0x80)
// duty := H/(H+L) = H/10000
// H+L is always 10 000 microsecond
// Left motor (PH) direction connected to P5.4 (J3.29)
#define LEFT_DIR_PIN BIT4 // P5.4
// Right motor (PH) direction connected to P5.5 (J3.30)
#define RIGHT_DIR_PIN BIT5 // P5.5
// Left motor (EN) PWM connected to P2.7/TA0CCP4 (J4.40)
#define LEFT_PWM_PIN BIT7 // P2.7
// Right motor (EN) PWM connected to P2.6/TA0CCP3 (J4.39)
#define RIGHT_PWM_PIN BIT6 // P2.6
// Left motor (nSLEEP) enable connected to P3.7 (J4.31)
#define LEFT_SLEEP_PIN BIT7 // P3.7
// Right motor (nSLEEP) enable connected to P3.6 (J2.11)
#define RIGHT_SLEEP_PIN BIT6 // P3.6
// Initializes the 6 GPIO output lines and puts driver to sleep
void MotorInit(void) {
// write this code
// 1. Configure all motor control pins as outputs
// P5.4 (Left DIR), P5.5 (Right DIR)
P5->SEL0 &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN); // GPIO function
P5->SEL1 &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN);
P5->DIR |= (LEFT_DIR_PIN | RIGHT_DIR_PIN); // Output direction
// P3.6 (Right SLEEP), P3.7 (Left SLEEP)
P3->SEL0 &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // GPIO function
P3->SEL1 &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN);
P3->DIR |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // Output direction
// P2.6 (Right EN), P2.7 (Left EN)
P2->SEL0 &= ~(LEFT_PWM_PIN | RIGHT_PWM_PIN); // GPIO function
P2->SEL1 &= ~(LEFT_PWM_PIN | RIGHT_PWM_PIN);
P2->DIR |= (LEFT_PWM_PIN | RIGHT_PWM_PIN); // Output direction
// 2. Initial state: disable motors
P3->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // SLEEP pins low - DRV8838 disabled
P2->OUT &= ~(LEFT_PWM_PIN | RIGHT_PWM_PIN); // EN pins low
SysTickWait1us(1000);
}
// Stops both motors, puts driver to sleep
void MotorStop(void) {
P2->OUT &= ~0xC0; // off
P3->OUT &= ~0xC0; // low current sleep mode
P3->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // SLEEP pins low
P2->OUT &= ~(LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // EN pins low
}
// Drives both motors forward at duty (100 to 9900)
// Runs for time duration, and then stops
// Stop the motors and return if any bumper switch is active
void MotorForward(uint16_t duty, uint32_t times_10ms) {
// write this code
P5->OUT &= ~(LEFT_DIR_PIN | RIGHT_DIR_PIN); // set direction - PH low
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // wake up motors
uint32_t i;
for (i = 0; i < times_10ms; ++i) {
P2->OUT |= (LEFT_PWM_PIN | RIGHT_PWM_PIN); // Enable both motors (EN high)
SysTickWait1us(duty);
P2->OUT &= ~(LEFT_PWM_PIN | RIGHT_PWM_PIN); // Disable motors
SysTickWait1us(10000 - duty);
uint8_t bump = BumpRead();
if ((~bump & BUMP_PINS)) break;
}
MotorStop();
}
// Drives both motors backward at duty (100 to 9900)
// Runs for time duration, and then stops
// Runs even if any bumper switch is active
void MotorBackward(uint16_t duty, uint32_t times_10ms) {
// write this code
P5->OUT |= (LEFT_DIR_PIN | RIGHT_DIR_PIN); // set direction - PH high
P3->OUT |= (LEFT_SLEEP_PIN | RIGHT_SLEEP_PIN); // wake up motors
uint32_t i;
for (i = 0; i < times_10ms; ++i) {
P2->OUT |= (LEFT_PWM_PIN | RIGHT_PWM_PIN); // Enable both motors (EN high)
SysTickWait1us(duty);
P2->OUT &= ~(LEFT_PWM_PIN | RIGHT_PWM_PIN); // Disable motors
SysTickWait1us(10000 - duty);
uint8_t bump = BumpRead();
if ((~bump & BUMP_PINS)) break;
}
MotorStop();
}
// Drives just the left motor forward at duty (100 to 9900)
@ -45,7 +123,22 @@ void MotorBackward(uint16_t duty, uint32_t times_10ms) {
// Runs for time duration, and then stops
// Stop the motor and return if any bumper switch is active
void MotorLeft(uint16_t duty, uint32_t times_10ms) {
// write this code
P5->OUT &= ~(LEFT_DIR_PIN); // set direction
P3->OUT |= (LEFT_SLEEP_PIN); // wake up motors
uint32_t i;
for (i = 0; i < times_10ms; ++i) {
P2->OUT |= (LEFT_PWM_PIN); // Enable both motors (EN high)
SysTickWait1us(duty);
P2->OUT &= ~(LEFT_PWM_PIN); // Disable motors
SysTickWait1us(10000 - duty);
uint8_t bump = BumpRead();
if ((~bump & BUMP_PINS)) break;
}
MotorStop();
}
// Drives just the right motor forward at duty (100 to 9900)
@ -53,5 +146,20 @@ void MotorLeft(uint16_t duty, uint32_t times_10ms) {
// Runs for time duration, and then stops
// Stop the motor and return if any bumper switch is active
void MotorRight(uint16_t duty, uint32_t times_10ms) {
// write this code
}
P5->OUT &= ~(RIGHT_DIR_PIN); // set direction - PH high
P3->OUT |= (RIGHT_SLEEP_PIN); // wake up motors
uint32_t i;
for (i = 0; i < times_10ms; ++i) {
P2->OUT |= (RIGHT_PWM_PIN); // Enable both motors (EN high)
SysTickWait1us(duty);
P2->OUT &= ~(RIGHT_PWM_PIN); // Disable motors
SysTickWait1us(10000 - duty);
uint8_t bump = BumpRead();
if ((~bump & BUMP_PINS)) break;
}
MotorStop();
}

73
common/pwm.c Normal file
View File

@ -0,0 +1,73 @@
#include "pwm.h"
#include "inc/msp432p401r.h"
// PWM on P2.4/.5 using TimerA0 TA0.CCR1/2
// period is 1.333us (1.333us = 2 * 666.7ns because of up/down)
// SMCLK = 48MHz/4 = 12 MHz, 83.33ns
// Let Timerclock period T = 8/12MHz = 666.7ns
// P2.4/.5 = 1 when timer equals TA0CCR1/2 on way down,
// P2.4/.5 = 0 when timer equals TA0CCR1/2 on way up
void PWMInitP2_4_P2_5(uint16_t period) {
P2->DIR |= 0x30;
P2->SEL0 |= 0x30; // Timer0A functions
P2->SEL1 &= ~0x30;
TIMER_A0->CCR[0] = period;
TIMER_A0->EX0 = 0; // Divide by 1
TIMER_A0->CCTL[1] = 0x40; // Toggle/reset
TIMER_A0->CCTL[2] = 0x40;
TIMER_A0->CCR[1] = 0; // Initial duty cycle to 0
TIMER_A0->CCR[2] = 0;
TIMER_A0->CTL = 0x2F0; // SMCLK = 12MHz, divide by 8, up-down mode
}
void SetPWMDutyP2_4(uint16_t duty) {
if (duty >= TIMER_A0->CCR[0]) return;
TIMER_A0->CCR[1] = duty;
}
void SetPWMDutyP2_5(uint16_t duty) {
if (duty >= TIMER_A0->CCR[0]) return;
TIMER_A0->CCR[2] = duty;
}
// PWM on P2.6/.7 using TimerA0 TA0.CCR3/4
// SMCLK = 48MHz/4 = 12 MHz, 83.33ns
// period is 1.333us
// Let Timerclock period T = 8/12MHz = 666.7ns
// P2.6/.7 = 1 when timer equals TA0CCR3/4 on way down,
// P2.6/.7 = 0 when timer equals TA0CCR3/4 on way up
void PWMInitMotor(uint16_t period) {
P2->DIR |= BIT6 | BIT7;
P2->SEL0 |= BIT6 | BIT7;
P2->SEL1 &= ~(BIT6 | BIT7);
TIMER_A0->CCR[0] = period;
TIMER_A0->EX0 = 0x00;
TIMER_A0->CCTL[3] = 0x40;
TIMER_A0->CCTL[4] = 0x40;
TIMER_A0->CCR[3] = 0;
TIMER_A0->CCR[4] = 0;
TIMER_A0->CTL = 0x02F0;
// ZKURVENA MRDKA
}
// right motor on P2.6 -> CCR3
void SetPWMDutyRightMotor(uint16_t duty) {
if (duty >= TIMER_A0->CCR[0]) return;
TIMER_A0->CCR[3] = duty;
}
// left motor on P2.7 -> CCR4
void SetPWMDutyLeftMotor(uint16_t duty) {
if (duty >= TIMER_A0->CCR[0]) return;
TIMER_A0->CCR[4] = duty;
}

10
common/pwm.h Normal file
View File

@ -0,0 +1,10 @@
#ifndef PWM_H
#define PWM_H
#include <stdint.h>
void PWMInitMotor(uint16_t period);
void SetPWMDutyRightMotor(uint16_t duty);
void SetPWMDutyLeftMotor(uint16_t duty);
#endif /* PWM_H */

View File

@ -9,10 +9,24 @@ void SysTickInit(void) {
// Assumes 48 MHz bus clock
void SysTickWait(uint32_t delay_ticks) {
// write this code
// 1. Write a desired delay_ticks value into the SysTick->LOAD register and subtract 1 from it,
SysTick->LOAD = delay_ticks - 1;
// 2. Clear the SysTick->VAL counter value, which also clears the COUNT bit,
SysTick->VAL = 0;
// 3. Wait for the COUNT bit in the SysTick->CTRL register to be set.
while((SysTick->CTRL & 0x00010000) == 0); // wait for COUNTFLAG
// any write to CVR clears it and COUNTFLAG in CSR
}
void SysTickWait1us(uint32_t times) {
// write this code
uint32_t count = (48 * times) / 0x00FFFFFF;
uint32_t rem = (48 * times) % 0x00FFFFFF;
uint32_t i;
for (i = 0; i < count; ++i) {
SysTickWait(0x00FFFFFF); // wait max
}
SysTickWait(rem);
}

67
common/tachometer.c Normal file
View File

@ -0,0 +1,67 @@
#include "tachometer.h"
#include "input_capture.h"
#include "inc/msp432p401r.h"
#define P5_0_IN (*((volatile uint8_t *)(0x42098800)))
#define P5_2_IN (*((volatile uint8_t *)(0x42098808)))
uint16_t tach_r_time1, tach_r_time2, tach_l_time1, tach_l_time2;
// incremented with every step forward, decremented with every step backward
int tach_r_steps, tach_l_steps;
TachDirection_t tach_r_dir, tach_l_dir;
// Right Encoder B connected to P5.0 (J2.13)
// When high, increase r_steps and set dir forward
// When low, decrease r_steps and set dir reverse
void TachometerRightInt(uint16_t current_time) {
tach_r_time1 = tach_r_time2;
tach_r_time2 = current_time;
tach_r_dir = (P5->IN & 0x01) ? Forward : Reverse;
// int delta = tach_r_time2 - tach_r_time1;
// int speed = 2000000 / delta;
if (tach_r_dir == Forward)
++tach_r_steps;
else
--tach_r_steps;
return;
}
// Left Encoder B connected to P5.2 (J2.12)
// When high, increase l_steps and set dir forward
// When low, decrease l_steps and set dir reverse
void TachometerLeftInt(uint16_t current_time) {
tach_l_time1 = tach_l_time2;
tach_l_time2 = current_time;
tach_l_dir = (P5->IN & 0x04) ? Forward : Reverse;
// int delta = tach_l_time2 - tach_l_time1;
// int speed = 2000000 / delta;
if (tach_l_dir == Forward)
++tach_l_steps;
else
--tach_l_steps;
return;
}
// Initialize P5.0 and P5.2 and make them GPIO inputs,
// which will be used to determine the direction of rotation.
// Initialize the input capture interface, which
// will be used to measure the speed of rotation.
void TachometerInit(void) {
P5->SEL0 |= 0x05; // Set SEL0 for bits 0 and 2
P5->SEL1 &= ~0x05; // Clear SEL1 for bits 0 and 2
P5->DIR &= ~0x05; // Set as inputs
tach_r_dir = tach_l_dir = Stopped;
TimerA3CaptureInit(&TachometerRightInt, &TachometerLeftInt);
}

15
common/tachometer.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef TACHOMETER_H
#define TACHOMETER_H
#include <stdint.h>
// Specifies the direction of the motor rotation, relative to the front of the robot
typedef enum TachDirection {
Reverse = -1,
Stopped,
Forward,
} TachDirection_t;
void TachometerInit(void);
#endif /* TACHOMETER_H */

35
common/timer_a1.c Normal file
View File

@ -0,0 +1,35 @@
#include "timer_a1.h"
#include "inc/msp432p401r.h"
void (*timer_a1_task)(void); // user function
// Activate Timer A1 interrupts to run user task periodically
// 16 bits period in units (24/SMCLK, with SMCLK 12 MHz -> 2us)
void TimerA1Init(void (*task)(void), uint16_t period) {
timer_a1_task = task;
// Stop timer, SMCLK, /4 divider
TIMER_A1->CTL = 0x0280;
// Configure CCR0
TIMER_A1->CCTL[0] = 0x0010; // Compare mode, enable interrupt
TIMER_A1->CCR[0] = (period - 1);
// Clock divider (EX0 register)
TIMER_A1->EX0 = 0x0005; // /6 divider (additional to the /4 above)
// NVIC configuration
NVIC->IP[3] = (NVIC->IP[3]&0xFFFFFF00)|0x00000040; // priority 2
NVIC->ISER[0] = 0x00001000; // enable interrupt 12 in NVIC
// Enable timer interrupts and start in up mode
TIMER_A1->CTL |= 0x0014 | 0x0020; // reset, up mode, enable interrupts
NVIC_EnableIRQ(TA1_0_IRQn);
}
void TA1_0_IRQHandler(void) {
TIMER_A1->CCTL[0] &= ~0x0001;
timer_a1_task();
}

9
common/timer_a1.h Normal file
View File

@ -0,0 +1,9 @@
#ifndef TIMER_A1_H
#define TIMER_A1_H
#include <stdint.h>
void TimerA1Init(void (*task)(void), uint16_t period);
void TimerA1Stop(void);
#endif /* TIMER_A1_H */

View File

@ -46,11 +46,11 @@ void SysTick_Handler(void) { // every 1ms
++tick_count;
if (1 == (tick_count % 10)) {
//ReflectanceStart(); // every 10ms
ReflectanceStart(); // every 10ms
}
if (2 == (tick_count % 10)) {
uint8_t r = ReflectanceRead(1000);
uint8_t r = ReflectanceEnd();
DebugDump( BumpRead(), ReflectancePosition(r) );
return;
}

View File

@ -44,16 +44,17 @@ void SwitchInit(void) {
}
void WaitTouchRelease(void) {
while(!(SW1IN || SW2IN)) {} // wait for touch
while(SW1IN || SW2IN) {} // wait for release
while(!(SW1IN || SW2IN)); // wait for touch
while( SW1IN || SW2IN ); // wait for release
}
int main_test_systick(void) {
int main_f(void) {
ClockInit48MHz();
SysTickInit();
RedLEDInit();
uint32_t H = 7500;
uint32_t H = 5000;
uint32_t L = 10000 - H;
while (true) {
P1->OUT |= 0x01;
SysTickWait1us(H);
@ -66,20 +67,37 @@ int main_test_systick(void) {
// The heartbeat stops when the operator pushes Button 2
// When beating, the P1.0 LED oscillates at 100 Hz (too fast to see with the eye)
// and the duty cycle is varied sinuosoidally once a second
int main_heartbeat(void) {
int main_s(void) {
uint32_t H;
uint32_t L;
uint32_t i = 0;
ClockInit48MHz();
// write this code
SysTickInit();
RedLEDInit();
while (true) {
// write this code
H = pulse_us[i];
L = 10000 - H; // 2. calculate L
P1->OUT |= 0x01; // 3. set P1.0 high
SysTickWait1us(H); // 4. wait H us
P1->OUT &= ~0x01; // 5. clear P1.0 low
SysTickWait1us(L); // 6. Wait L us
i = (i + 1) % 100;
}
}
int main_test_wheels(void) {
void MotorTestPulse(void);
int main(void) {
ClockInit48MHz();
SysTickInit();
SwitchInit();
BumpInit();
MotorInit(); // your function
// MotorForward(1500, 100);
// return 0;
while (true) {
WaitTouchRelease();
MotorForward(1500, 100); // your function

77
lab5/Makefile Normal file
View File

@ -0,0 +1,77 @@
CC = arm-none-eabi-gcc
# The location of the C compiler
# ARMGCC_ROOT is used by some makefiles that need to know where the compiler
# is installed.
ARMGCC_BIN := ${shell which ${CC}}
ifeq (${shell test -h ${ARMGCC_BIN} && echo "true" || echo "false"}, true)
ARMGCC_ROOT := ${shell dirname ${shell readlink ${ARMGCC_BIN}}}/..
else
ARMGCC_ROOT := ${shell dirname ${ARMGCC_BIN}}/..
endif
# Search for source files that are not in this directory
VPATH = ../common/
OBJECTS = main.o timer_a1.o delay.o motor.o pwm.o bump.o cpu.o clock.o system.o startup.o syscalls.o
NAME = lab
CFLAGS = -I.. -I../inc -I../common \
-D__MSP432P401R__ \
-DDeviceFamily_MSP432P401x \
-mcpu=cortex-m4 \
-march=armv7e-m \
-mthumb \
-std=c99 \
-mfloat-abi=hard \
-mfpu=fpv4-sp-d16 \
-ffunction-sections \
-fdata-sections \
-gstrict-dwarf \
-Wall \
-I$(ARMGCC_ROOT)/arm-none-eabi/include/newlib-nano \
-I$(ARMGCC_ROOT)/arm-none-eabi/include
LFLAGS = -Wl,-T,../config.lds \
-Wl,-Map,$(NAME).map \
-march=armv7e-m \
-mthumb \
-mfloat-abi=hard \
-mfpu=fpv4-sp-d16 \
-static \
-Wl,--gc-sections \
-lgcc \
-lc \
-lm \
-lnosys \
--specs=nano.specs
all: $(NAME).out
@echo "SUCCESS: Compilation completed successfully."
%.o: %.c
@$(CC) $(CFLAGS) -g $< -c -o $@
cpu.o: ../common/cpu.c
@$(CC) $(CFLAGS) $< -c -o $@
clock.o: ../common/clock.c
@$(CC) $(CFLAGS) $< -c -o $@
system.o: ../system.c
@$(CC) $(CFLAGS) $< -c -o $@
startup.o: ../startup.c
@$(CC) $(CFLAGS) $< -c -o $@
syscalls.o: ../syscalls.c
@$(CC) $(CFLAGS) $< -c -o $@
$(NAME).out: $(OBJECTS)
@$(CC) $(OBJECTS) $(LFLAGS) -o $(NAME).out
clean: # Redirecting both the stderr and stdout to /dev/null
@rm -f $(OBJECTS) > /dev/null 2>&1
@rm -f $(NAME).out > /dev/null 2>&1
@rm -f $(NAME).map > /dev/null 2>&1

147
lab5/main.c Normal file
View File

@ -0,0 +1,147 @@
#include <stdint.h>
#include <stdbool.h>
#include "../common/cpu.h"
#include "../common/motor.h"
#include "../common/pwm.h"
#include "../common/clock.h"
#include "../common/input_capture.h"
#include "../common/timer_a1.h"
#include "../common/tachometer.h"
#include "inc/msp432p401r.h"
void RedLEDInit(void) {
P1->SEL0 &= ~0x01;
P1->SEL1 &= ~0x01; // 1) configure P1.0 as GPIO
P1->DIR |= 0x01; // 2) make P1.0 out
}
// bit-banded address
#define REDLED (*((volatile uint8_t *)(0x42098040)))
void ColorLEDInit(void) {
P2->SEL0 &= ~0x07;
P2->SEL1 &= ~0x07; // 1) configure P2.2-P2.0 as GPIO
P2->DIR |= 0x07; // 2) make P2.2-P2.0 out
P2->DS |= 0x07; // 3) activate increased drive strength
P2->OUT &= ~0x07; // all LEDs off
}
// bit-banded addresses
#define BLUEOUT (*((volatile uint8_t *)(0x42098068)))
#define GREENOUT (*((volatile uint8_t *)(0x42098064)))
#define REDOUT (*((volatile uint8_t *)(0x42098060)))
uint16_t period0, period1; // (1/SMCLK) units = 83.3 ns units
uint16_t first0, first1; // Timer A3 first edge, P10.4/.5
bool done0, done1; // set each rising
// max period is (2^16-1)*83.3 ns = 5.4612 ms
// min period determined by time to run ISR, which is about 1 us
void PeriodMeasure0(uint16_t time) {
REDOUT ^= 1;
period0 = time - first0; // 83.3 ns resolution
first0 = time; // setup for next
done0 = true;
}
// max period is (2^16-1)*83.3 ns = 5.4612 ms
// min period determined by time to run ISR, which is about 1 us
void PeriodMeasure1(uint16_t time) {
REDLED ^= 1;
period1 = time - first1; // 83.3 ns resolution
first1 = time; // setup for next
done1 = true;
}
void dummy() {
volatile int i = 1;
i = i + 2;
return;
}
int main(void) {
CPU_cpsid(); // Disable interrupts
ClockInit48MHz(); // 48 MHz clock; 12 MHz Timer A clock
RedLEDInit();
ColorLEDInit();
PWMInitMotor(7502);
MotorInit();
TimerA1Init(&dummy, 1000);
TimerA3CaptureInit(&PeriodMeasure0, &PeriodMeasure1);
// MotorForward(3751, 3751); // 50%
// MotorForward(1000, 1000);
CPU_cpsie(); // Enable interrupts
CPU_wfi(); // Wait for interrupt
return 0;
}
uint16_t speed_buf[500]; // RPM, radius 0.035m wheels
uint32_t period_buf[500]; // 1/12MHz = 0.083 usec
uint32_t duty; // 0 to 15000
uint32_t time; // in 0.01 sec
void Collect(void) {
GREENOUT ^= 1;
if (!done0) period0 = 0xFFFF - 1; // stopped
if (!done1) period1 = 0xFFFF - 1;
done0 = done1 = false; // set on subsequent
switch (time) {
case 0:
duty = 1875; // 25%
MotorForward(duty, duty);
break;
case 100:
duty = 3751; // 50%
MotorForward(duty, duty);
break;
case 200:
duty = 5626; // 75%
MotorForward(duty, duty);
break;
case 300:
duty = 3751; // 50%
MotorForward(duty, duty);
break;
case 400:
duty = 1875; // 25%
MotorForward(duty, duty);
break;
case 500:
MotorStop();
TIMER_A1->CTL &= ~0x30; // Halt timer A1
break;
default:
speed_buf[time] = 2000000 / period0;
period_buf[time] = period0;
break;
}
++time;
}
int main_collect(void) {
CPU_cpsid(); // Disable interrupts
ClockInit48MHz(); // 48 MHz clock; 12 MHz Timer A clock
RedLEDInit();
ColorLEDInit();
PWMInitMotor(7502);
MotorInit();
TimerA3CaptureInit(&PeriodMeasure0, &PeriodMeasure1);
TimerA1Init(&Collect, 5000); // 100 Hz
CPU_cpsie(); // Enable interrupts
CPU_wfi(); // Wait for interrupt
return 0;
}
int main_tach(void) {
CPU_cpsid(); // Disable interrupts
ClockInit48MHz();
PWMInitMotor(7502);
MotorInit();
TachometerInit();
MotorForward(2000, 2000); // confirm if rotating forward
//MotorBackward(2000, 2000); // confirm if rotating backward
CPU_cpsie(); // Enable interrupts
CPU_wfi(); // Wait for interrupt
return 0;
}

77
lab6/Makefile Normal file
View File

@ -0,0 +1,77 @@
CC = arm-none-eabi-gcc
# The location of the C compiler
# ARMGCC_ROOT is used by some makefiles that need to know where the compiler
# is installed.
ARMGCC_BIN := ${shell which ${CC}}
ifeq (${shell test -h ${ARMGCC_BIN} && echo "true" || echo "false"}, true)
ARMGCC_ROOT := ${shell dirname ${shell readlink ${ARMGCC_BIN}}}/..
else
ARMGCC_ROOT := ${shell dirname ${ARMGCC_BIN}}/..
endif
# Search for source files that are not in this directory
VPATH = ../common/
OBJECTS = main.o timer_a1.o motor.o pwm.o input_capture.o tachometer.o cpu.o clock.o system.o startup.o syscalls.o
NAME = lab
CFLAGS = -I.. -I../inc -I../common \
-D__MSP432P401R__ \
-DDeviceFamily_MSP432P401x \
-mcpu=cortex-m4 \
-march=armv7e-m \
-mthumb \
-std=c99 \
-mfloat-abi=hard \
-mfpu=fpv4-sp-d16 \
-ffunction-sections \
-fdata-sections \
-gstrict-dwarf \
-Wall \
-I$(ARMGCC_ROOT)/arm-none-eabi/include/newlib-nano \
-I$(ARMGCC_ROOT)/arm-none-eabi/include
LFLAGS = -Wl,-T,../config.lds \
-Wl,-Map,$(NAME).map \
-march=armv7e-m \
-mthumb \
-mfloat-abi=hard \
-mfpu=fpv4-sp-d16 \
-static \
-Wl,--gc-sections \
-lgcc \
-lc \
-lm \
-lnosys \
--specs=nano.specs
all: $(NAME).out
@echo "SUCCESS: Compilation completed successfully."
%.o: %.c
@$(CC) $(CFLAGS) -g $< -c -o $@
cpu.o: ../common/cpu.c
@$(CC) $(CFLAGS) $< -c -o $@
clock.o: ../common/clock.c
@$(CC) $(CFLAGS) $< -c -o $@
system.o: ../system.c
@$(CC) $(CFLAGS) $< -c -o $@
startup.o: ../startup.c
@$(CC) $(CFLAGS) $< -c -o $@
syscalls.o: ../syscalls.c
@$(CC) $(CFLAGS) $< -c -o $@
$(NAME).out: $(OBJECTS)
@$(CC) $(OBJECTS) $(LFLAGS) -o $(NAME).out
clean: # Redirecting both the stderr and stdout to /dev/null
@rm -f $(OBJECTS) > /dev/null 2>&1
@rm -f $(NAME).out > /dev/null 2>&1
@rm -f $(NAME).map > /dev/null 2>&1

149
lab6/main.c Normal file
View File

@ -0,0 +1,149 @@
#include <stdint.h>
#include <stdbool.h>
#include "../common/cpu.h"
#include "../common/motor.h"
#include "../common/pwm.h"
#include "../common/clock.h"
#include "../common/input_capture.h"
#include "../common/timer_a1.h"
#include "../common/tachometer.h"
#include "inc/msp432p401r.h"
void RedLEDInit(void) {
P1->SEL0 &= ~0x01;
P1->SEL1 &= ~0x01; // 1) configure P1.0 as GPIO
P1->DIR |= 0x01; // 2) make P1.0 out
}
// bit-banded address
#define REDLED (*((volatile uint8_t *)(0x42098040)))
void ColorLEDInit(void) {
P2->SEL0 &= ~0x07;
P2->SEL1 &= ~0x07; // 1) configure P2.2-P2.0 as GPIO
P2->DIR |= 0x07; // 2) make P2.2-P2.0 out
P2->DS |= 0x07; // 3) activate increased drive strength
P2->OUT &= ~0x07; // all LEDs off
}
// bit-banded addresses
#define BLUEOUT (*((volatile uint8_t *)(0x42098068)))
#define GREENOUT (*((volatile uint8_t *)(0x42098064)))
#define REDOUT (*((volatile uint8_t *)(0x42098060)))
uint16_t period0, period1; // (1/SMCLK) units = 83.3 ns units
uint16_t first0, first1; // Timer A3 first edge, P10.4/.5
bool done0, done1; // set each rising
// max period is (2^16-1)*83.3 ns = 5.4612 ms
// min period determined by time to run ISR, which is about 1 us
void PeriodMeasure0(uint16_t time) {
REDOUT ^= 1;
period0 = time - first0; // 83.3 ns resolution
first0 = time; // setup for next
done0 = true;
}
// max period is (2^16-1)*83.3 ns = 5.4612 ms
// min period determined by time to run ISR, which is about 1 us
void PeriodMeasure1(uint16_t time) {
REDLED ^= 1;
period1 = time - first1; // 83.3 ns resolution
first1 = time; // setup for next
done1 = true;
}
void dummy() {
volatile int i = 1;
i = i + 2;
return;
}
int main_f(void) {
CPU_cpsid(); // Disable interrupts
ClockInit48MHz(); // 48 MHz clock; 12 MHz Timer A clock
RedLEDInit();
ColorLEDInit();
PWMInitMotor(3751);
MotorInit();
// TimerA1Init(&dummy, 1000);
TimerA3CaptureInit(&PeriodMeasure0, &PeriodMeasure1);
// MotorForward(3751, 3751); // 50%
// MotorForward(1000, 1000);
CPU_cpsie(); // Enable interrupts
CPU_wfi(); // Wait for interrupt
return 0;
}
uint16_t speed_buf[500]; // RPM, radius 0.035m wheels
uint32_t period_buf[500]; // 1/12MHz = 0.083 usec
uint32_t duty; // 0 to 15000
uint32_t time; // in 0.01 sec
void Collect(void) {
GREENOUT ^= 1;
if (!done0) period0 = 0xFFFF - 1; // stopped
if (!done1) period1 = 0xFFFF - 1;
done0 = done1 = false; // set on subsequent
switch (time) {
case 0:
duty = 1875; // 25%
MotorForward(duty, duty);
break;
case 100:
duty = 3751; // 50%
MotorForward(duty, duty);
break;
case 200:
duty = 5626; // 75%
MotorForward(duty, duty);
break;
case 300:
duty = 3751; // 50%
MotorForward(duty, duty);
break;
case 400:
duty = 1875; // 25%
MotorForward(duty, duty);
break;
case 500:
MotorStop();
TIMER_A1->CTL &= ~0x30; // Halt timer A1
break;
default:
speed_buf[time] = 2000000 / period0;
period_buf[time] = period0;
break;
}
++time;
}
int main_s(void) {
CPU_cpsid(); // Disable interrupts
ClockInit48MHz(); // 48 MHz clock; 12 MHz Timer A clock
RedLEDInit();
ColorLEDInit();
PWMInitMotor(3751);
MotorInit();
TimerA3CaptureInit(&PeriodMeasure0, &PeriodMeasure1);
TimerA1Init(&Collect, 5000); // 100 Hz
CPU_cpsie(); // Enable interrupts
CPU_wfi(); // Wait for interrupt
return 0;
}
int main(void) {
CPU_cpsid(); // Disable interrupts
ClockInit48MHz();
PWMInitMotor(3751);
MotorInit();
TachometerInit();
// MotorForward(2000, 2000); // confirm if rotating forward
//MotorBackward(2000, 2000); // confirm if rotating backward
CPU_cpsie(); // Enable interrupts
// CPU_wfi(); // Wait for interrupt
while (1);
return 0;
}