Taltech_embedded/common/clock.c

75 lines
4.1 KiB
C

#include "clock.h"
#include "inc/msp432p401r.h"
// Configure the system clock to run at the fastest
// and most accurate settings.
uint32_t pre_wait = 0; // loops between BSP_Clock_InitFastest() called and PCM idle (expect 0)
uint32_t cpm_wait = 0; // loops between Power Active Mode Request and Current Power Mode matching requested mode (expect small)
uint32_t post_wait = 0; // loops between Current Power Mode matching requested mode and PCM module idle (expect about 0)
uint32_t iflags = 0; // non-zero if transition is invalid
uint32_t crystal_stable = 0; // loops before the crystal stabilizes (expect small)
void ClockInit48MHz(void) {
// wait for the PCMCTL0 and Clock System to be write-able by waiting for Power Control Manager to be idle
while (PCM->CTL1 & 0x00000100) {
pre_wait++;
if (pre_wait >= 100000) {
return; // time out error
}
}
// request power active mode LDO VCORE1 to support the 48 MHz frequency
PCM->CTL0 = (PCM->CTL0 & ~0xFFFF000F) | // clear PCMKEY bit field and AMR bit field
0x695A0000 | // write the proper PCM key to unlock write access
0x00000001; // request power active mode LDO VCORE1
// check if the transition is invalid (see Figure 7-3 on p344 of datasheet)
if (PCM->IFG & 0x00000004) {
iflags = PCM->IFG; // bit 2 set on active mode transition invalid; bits 1-0 are for LPM-related errors; bit 6 is for DC-DC-related error
PCM->CLRIFG = 0x00000004; // clear the transition invalid flag
// to do: look at CPM bit field in PCMCTL0, figure out what mode you're in, and step through the chart to transition to the mode you want
// or be lazy and do nothing; this should work out of reset at least, but it WILL NOT work if Clock_Int32kHz() or Clock_InitLowPower() has been called
return;
}
// wait for the CPM (Current Power Mode) bit field to reflect a change to active mode LDO VCORE1
while ((PCM->CTL0 & 0x00003F00) != 0x00000100) {
cpm_wait++;
if (cpm_wait >= 500000) {
return; // time out error
}
}
// wait for the PCMCTL0 and Clock System to be write-able by waiting for Power Control Manager to be idle
while (PCM->CTL1 & 0x00000100) {
post_wait++;
if (post_wait >= 100000) {
return; // time out error
}
}
// initialize PJ.3 and PJ.2 and make them HFXT (PJ.3 built-in 48 MHz crystal out; PJ.2 built-in 48 MHz crystal in)
PJ->SEL0 |= 0x0C;
PJ->SEL1 &= ~0x0C; // configure built-in 48 MHz crystal for HFXT operation
CS->KEY = 0x695A; // unlock CS module for register access
CS->CTL2 = (CS->CTL2 & ~0x00700000) | // clear HFXTFREQ bit field
0x00600000 | // configure for 48 MHz external crystal
0x00010000 | // HFXT oscillator drive selection for crystals >4 MHz
0x01000000; // enable HFXT
CS->CTL2 &= ~0x02000000; // disable high-frequency crystal bypass
// wait for the HFXT clock to stabilize
while (CS->IFG & 0x00000002) {
CS->CLRIFG = 0x00000002; // clear the HFXT oscillator interrupt flag
crystal_stable++;
if (crystal_stable > 100000) {
return; // time out error
}
}
// configure for 2 wait states (minimum for 48 MHz operation) for flash Bank 0
FLCTL->BANK0_RDCTL = (FLCTL->BANK0_RDCTL & ~0x0000F000) | FLCTL_BANK0_RDCTL_WAIT_2;
// configure for 2 wait states (minimum for 48 MHz operation) for flash Bank 1
FLCTL->BANK1_RDCTL = (FLCTL->BANK1_RDCTL & ~0x0000F000) | FLCTL_BANK1_RDCTL_WAIT_2;
CS->CTL1 = 0x20000000 | // configure for SMCLK divider /4
0x00100000 | // configure for HSMCLK divider /2
0x00000200 | // configure for ACLK sourced from REFOCLK
0x00000050 | // configure for SMCLK and HSMCLK sourced from HFXTCLK
0x00000005; // configure for MCLK sourced from HFXTCLK
CS->KEY = 0; // lock CS module from unintended access
}