Taltech_embedded/common/rtos.c

191 lines
5.3 KiB
C

#include <stdlib.h>
#include "rtos.h"
#include "clock.h"
#include "cpu.h"
#include "timer_a1.h"
#include "inc/msp432p401r.h"
#define THREADS 2
#define PERIODIC_THREADS 2
#define STACKSIZE 100
typedef struct Tcb {
int32_t* sp; // stack pointer
struct Tcb* next; // linked-list
int32_t* blocked; // shows on which semaphore it is blocked
int32_t sleep;
} Tcb_t;
PeriodicEvent_t periodic_event_threads[PERIODIC_THREADS];
Tcb_t tcbs[THREADS];
Tcb_t* run_pt;
int32_t stacks[THREADS][STACKSIZE];
void RunPeriodicEvents(void);
void __attribute__((naked)) SysTick_Handler(void) {
__asm volatile (
"CPSID I \n" // disable interrupts
"PUSH {R4-R11} \n" // save R4-R11
"LDR R0, =run_pt \n" // R0 = pointer to run_pt
"LDR R1, [R0] \n" // R1 = run_pt
"STR SP, [R1] \n" // save current SP
"PUSH {R0, LR} \n" // save R0, LR
"BL Scheduler \n" // call scheduler
"POP {R0, LR} \n" // restore R0, LR
"LDR R1, [R0] \n" // R1 = run_pt
"LDR SP, [R1] \n" // restore new SP
"POP {R4-R11} \n" // restore R4-R11
"CPSIE I \n" // enable interrupts
"BX LR \n" // exit exception
".align 4 \n"
);
}
void __attribute__((naked))
StartOS(void) {
__asm volatile (
"LDR R0, =run_pt \n" // address of run_pt
"LDR R1, [R0] \n" // R1 = run_pt
"LDR SP, [R1] \n" // SP = run_pt->sp
"POP {R4-R11} \n" // restore R4-R11
"POP {R0-R3} \n" // restore R0-R3
"POP {R12} \n" // restore R12
"ADD SP, SP, #4 \n" // skip LR
"POP {LR} \n" // load thread start address
"ADD SP, SP, #4 \n" // skip PSR
"CPSIE I \n" // enable interrupts
"BX LR \n" // start thread
".align 4 \n"
);
}
void SetInitialStack(int i) {
tcbs[i].sp = &stacks[i][STACKSIZE-16];
stacks[i][STACKSIZE-1] = 0x01000000; // xPSR thumb bit
stacks[i][STACKSIZE-16] = 16; // R4
stacks[i][STACKSIZE-15] = 15; // R5
stacks[i][STACKSIZE-14] = 14; // R6
stacks[i][STACKSIZE-13] = 13; // R7
stacks[i][STACKSIZE-12] = 12; // R8
stacks[i][STACKSIZE-11] = 11; // R9
stacks[i][STACKSIZE-10] = 10; // R10
stacks[i][STACKSIZE-9] = 9; // R11
stacks[i][STACKSIZE-8] = 8; // R0
stacks[i][STACKSIZE-7] = 7; // R1
stacks[i][STACKSIZE-6] = 6; // R2
stacks[i][STACKSIZE-5] = 5; // R3
stacks[i][STACKSIZE-4] = 4; // R12
stacks[i][STACKSIZE-3] = 0; // LR (0 causes fault if thread returns)
}
// Initialize operating system, disable interrupts
// Initialize OS controlled I/O: systick, bus clock as fast as possible
void RoundRobinInit(void) {
CPU_cpsid();
ClockInit48MHz();
// Write TimerA1Init here 1000 Hz
}
void AddThreads(void (**threads)(void)) {
uint32_t i = 0;
for (; i < THREADS; ++i) {
SetInitialStack(i);
stacks[i][STACKSIZE-2] = (int32_t)threads[i];
tcbs[i].next = &tcbs[ (i+1) % THREADS ];
tcbs[i].blocked = 0;
tcbs[i].sleep = 0;
// tcbs[i].priority = p0;
}
run_pt = &tcbs[0];
}
void AddPeriodicEventThreads(PeriodicEvent_t *periodic_events) {
uint32_t i = 0;
for (;i < PERIODIC_THREADS; ++i) {
periodic_event_threads[i] = periodic_events[i];
}
}
void RoundRobinLaunch(uint32_t time_slice_cycles) {
SysTick->CTRL = 0; // 1) disable SysTick during setup
SysTick->LOAD = time_slice_cycles - 1; // 2) reload value sets period
SysTick->VAL = 0; // 3) any write to current clears it
SCB->SHP[11] = 7 << 5; // set priority into top 3 bits of 8-bit register
SysTick->CTRL = 0x00000007; // 4) enable SysTick with core clock and interrupts
TimerA1Init(RunPeriodicEvents, 5000); // 100Hz
StartOS(); // start on the first task
}
void RunPeriodicEvents(void) {
int32_t i;
for (i = 0; i < THREADS; ++i) {
if (tcbs[i].sleep) {
--(tcbs[i].sleep);
}
}
for (i = 0; i < PERIODIC_THREADS; ++i) {
periodic_event_threads[i].event();
}
}
void Scheduler(void) {
Tcb_t* t = run_pt->next;
while (t->blocked || t->sleep) {
t = t->next;
}
run_pt = t;
}
void Suspend(void) {
SysTick->VAL = 0; // clear
SCB->ICSR |= SCB_ICSR_PENDSTSET_Msk; // trigger
}
void Sleep(int32_t time) {
run_pt->sleep = time;
Suspend();
}
// Decrement semaphore
void Wait(int32_t *sema_pt) {
CPU_cpsid();
--(*sema_pt);
if((*sema_pt) < 0) {
run_pt->blocked = sema_pt; // reason it is blocked
CPU_cpsie();
Suspend();
}
CPU_cpsie();
}
// Increment semaphore
void Signal(int32_t *sema_pt) {
Tcb_t *pt;
CPU_cpsid();
++(*sema_pt);
if ((*sema_pt) <= 0) {
pt = run_pt->next;
while(pt->blocked != sema_pt) {
pt = pt->next;
}
pt->blocked = 0;
}
CPU_cpsie();
}