// Lab1.c // Runs on either MSP432 or TM4C123 // Start project to Lab 1. Take sensor readings, process the data, // and output the results. Specifically, this program will // measure steps using the accelerometer, audio noise using // microphone, and light intensity using the light sensor. // Daniel and Jonathan Valvano // February 3, 2016 /* This example accompanies the books "Embedded Systems: Real Time Interfacing to ARM Cortex M Microcontrollers", ISBN: 978-1463590154, Jonathan Valvano, copyright (c) 2016 "Embedded Systems: Real-Time Operating Systems for ARM Cortex-M Microcontrollers", ISBN: 978-1466468863, Jonathan Valvano, copyright (c) 2016 "Embedded Systems: Introduction to the MSP432 Microcontroller", ISBN: 978-1512185676, Jonathan Valvano, copyright (c) 2016 "Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller", ISBN: 978-1514676585, Jonathan Valvano, copyright (c) 2016 Copyright 2016 by Jonathan W. Valvano, valvano@mail.utexas.edu You may use, edit, run or distribute this file as long as the above copyright notice remains THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. VALVANO SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. For more information about my classes, my research, and my books, see http://users.ece.utexas.edu/~valvano/ */ // J1 J3 J4 J2 // [ 1] [21] [40] [20] // [ 2] [22] [39] [19] // [ 3] [23] [38] [18] // [ 4] [24] [37] [17] // [ 5] [25] [36] [16] // [ 6] [26] [35] [15] // [ 7] [27] [34] [14] // [ 8] [28] [33] [13] // [ 9] [29] [32] [12] // [10] [30] [31] [11] // +3.3V connected to J1.1 (power) // joystick horizontal (X) connected to J1.2 (analog) // UART from BoosterPack to LaunchPad connected to J1.3 (UART) // UART from LaunchPad to BoosterPack connected to J1.4 (UART) // joystick Select button connected to J1.5 (digital) // microphone connected to J1.6 (analog) // LCD SPI clock connected to J1.7 (SPI) // ambient light (OPT3001) interrupt connected to J1.8 (digital) // ambient light (OPT3001) and temperature sensor (TMP006) I2C SCL connected to J1.9 (I2C) // ambient light (OPT3001) and temperature sensor (TMP006) I2C SDA connected to J1.10 (I2C) // temperature sensor (TMP006) interrupt connected to J2.11 (digital) // nothing connected to J2.12 (SPI CS_Other) // LCD SPI CS connected to J2.13 (SPI) // nothing connected to J2.14 (SPI MISO) // LCD SPI data connected to J2.15 (SPI) // nothing connected to J2.16 (reset) // LCD !RST connected to J2.17 (digital) // nothing connected to J2.18 (SPI CS_Wireless) // servo PWM connected to J2.19 (PWM) // GND connected to J2.20 (ground) // +5V connected to J3.21 (power) // GND connected to J3.22 (ground) // accelerometer X connected to J3.23 (analog) // accelerometer Y connected to J3.24 (analog) // accelerometer Z connected to J3.25 (analog) // joystick vertical (Y) connected to J3.26 (analog) // nothing connected to J3.27 (I2S WS) // nothing connected to J3.28 (I2S SCLK) // nothing connected to J3.29 (I2S SDout) // nothing connected to J3.30 (I2S SDin) // LCD RS connected to J4.31 (digital) // user Button2 (bottom) connected to J4.32 (digital) // user Button1 (top) connected to J4.33 (digital) // gator hole switch connected to J4.34 (digital) // nothing connected to J4.35 // nothing connected to J4.36 // RGB LED blue connected to J4.37 (PWM) // RGB LED green connected to J4.38 (PWM) // RGB LED red (jumper up) or LCD backlight (jumper down) connected to J4.39 (PWM) // buzzer connected to J4.40 (PWM) #include #include "BSP.h" #include "Profile.h" #include "Texas.h" #include "CortexM.h" uint32_t sqrt32(uint32_t s); //---------------- Global variables shared between tasks ---------------- uint32_t Time; // elasped time in seconds uint32_t Steps; // number of steps counted uint32_t Magnitude; // will not overflow (3*1,023^2 = 3,139,587) // Exponentially Weighted Moving Average uint32_t EWMA; // https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average uint16_t SoundData; // raw data sampled from the microphone uint32_t SoundRMS; // Root Mean Square average of most recent sound samples uint32_t LightData; int ReDrawAxes = 0; // non-zero means redraw axes on next display task enum plotstate{ Accelerometer, Microphone, Light }; enum plotstate PlotState = Accelerometer; //color constants #define BGCOLOR LCD_BLACK #define AXISCOLOR LCD_ORANGE #define MAGCOLOR LCD_YELLOW #define EWMACOLOR LCD_CYAN #define SOUNDCOLOR LCD_CYAN #define LIGHTCOLOR LCD_LIGHTGREEN #define TOPTXTCOLOR LCD_WHITE #define TOPNUMCOLOR LCD_ORANGE //------------ end of Global variables shared between tasks ------------- //---------------- Task0 samples sound from microphone ---------------- //#define SOUNDRMSLENGTH 10 // number of samples to collect before calculating RMS (may overflow if greater than 4104) #define SOUNDRMSLENGTH 1000 // number of samples to collect before calculating RMS (may overflow if greater than 4104) int16_t SoundArray[SOUNDRMSLENGTH]; // *********Task0_Init********* // initializes microphone // Task0 measures sound intensity // Inputs: none // Outputs: none void Task0_Init(void){ BSP_Microphone_Init(); SoundRMS = 0; } // *********Task0********* // collects data from microphone // Inputs: none // Outputs: none void Task0(void){ static int32_t soundSum = 0; static int time = 0;// units of microphone sampling rate int32_t soundAvg; int i; TExaS_Task0(); // record system time in array, toggle virtual logic analyzer Profile_Toggle0(); // viewed by the logic analyzer to know Task0 started BSP_Microphone_Input(&SoundData); soundSum = soundSum + (int32_t)SoundData; SoundArray[time] = SoundData; time = time + 1; if(time == SOUNDRMSLENGTH){ time = 0; soundAvg = soundSum/SOUNDRMSLENGTH; soundSum = 0; for(i=0; i LocalMax){ LocalMax = Magnitude; LocalCount = 0; } else{ LocalCount = LocalCount + 1; if(LocalCount >= LOCALCOUNTTARGET){ AlgorithmState = LookingForCross1; } } } else if(AlgorithmState == LookingForCross1){ if(Magnitude > LocalMax){ // somehow measured a very large magnitude LocalMax = Magnitude; LocalCount = 0; AlgorithmState = LookingForMax; } else if(Magnitude < (EWMA - AVGOVERSHOOT)){ // step detected Steps = Steps + 1; LocalMin = 1024; LocalCount = 0; AlgorithmState = LookingForMin; } } else if(AlgorithmState == LookingForMin){ if(Magnitude < LocalMin){ LocalMin = Magnitude; LocalCount = 0; } else{ LocalCount = LocalCount + 1; if(LocalCount >= LOCALCOUNTTARGET){ AlgorithmState = LookingForCross2; } } } else if(AlgorithmState == LookingForCross2){ if(Magnitude < LocalMin){ // somehow measured a very small magnitude LocalMin = Magnitude; LocalCount = 0; AlgorithmState = LookingForMin; } else if(Magnitude > (EWMA + AVGOVERSHOOT)){ // step detected Steps = Steps + 1; LocalMax = 0; LocalCount = 0; AlgorithmState = LookingForMax; } } } /* ****************************************** */ /* End of Task1 Section */ /* ****************************************** */ //---------------- Task2 measures light ---------------- uint32_t Task2Failures; // number of times Light wasn't ready // *********Task2_Init********* // initializes light sensor // Task2 measures light intensity // Inputs: none // Outputs: none void Task2_Init(void){ Task2Failures = 0; BSP_LightSensor_Init(); LightData = BSP_LightSensor_Input(); BSP_LightSensor_Start(); } // *********Task2********* // collects data from light sensor // Inputs: none // Outputs: none // must be called less than once a second void Task2(void){ TExaS_Task2(); // record system time in array, toggle virtual logic analyzer Profile_Toggle2(); // viewed by the logic analyzer to know Task2 started if(BSP_LightSensor_End(&LightData)==0){ Task2Failures++; // should have been ready } BSP_LightSensor_Start(); // start measurement for next time } /* ****************************************** */ /* End of Task2 Section */ /* ****************************************** */ //------------Task3 handles switch input, buzzer output, LED output------- // *********Task3_Init********* // initializes switches, buzzer, and LEDs // Task3 checks the switches, updates the mode, and outputs to the buzzer and LED // Inputs: none // Outputs: none void Task3_Init(void){ BSP_Button1_Init(); BSP_Button2_Init(); BSP_Buzzer_Init(0); BSP_RGB_Init(0, 0, 0); } // *********Task3********* // non-real-time task // checks the switches, updates the mode, and outputs to the buzzer and LED // Inputs: none // Outputs: none void Task3(void){ static uint8_t prev1 = 0, prev2 = 0; uint8_t current; TExaS_Task3(); // record system time in array, toggle virtual logic analyzer Profile_Toggle3(); // viewed by the logic analyzer to know Task3 started BSP_Buzzer_Set(0); current = BSP_Button1_Input(); if((current == 0) && (prev1 != 0)){ // Button1 was pressed since last loop if(PlotState == Accelerometer){ PlotState = Microphone; } else if(PlotState == Microphone){ PlotState = Light; } else if(PlotState == Light){ PlotState = Accelerometer; } ReDrawAxes = 1; // redraw axes on next call of display task BSP_Buzzer_Set(512); // beep until next call of this task } prev1 = current; current = BSP_Button2_Input(); if((current == 0) && (prev2 != 0)){ // Button2 was pressed since last loop if(PlotState == Accelerometer){ PlotState = Light; } else if(PlotState == Microphone){ PlotState = Accelerometer; } else if(PlotState == Light){ PlotState = Microphone; } ReDrawAxes = 1; // redraw axes on next call of display task BSP_Buzzer_Set(512); // beep until next call of this task } prev2 = current; // update the LED switch(AlgorithmState){ case LookingForMax: BSP_RGB_Set(500, 0, 0); break; case LookingForCross1: BSP_RGB_Set(350, 350, 0); break; case LookingForMin: BSP_RGB_Set(0, 500, 0); break; case LookingForCross2: BSP_RGB_Set(0, 0, 500); break; default: BSP_RGB_Set(0, 0, 0); } } /* ****************************************** */ /* End of Task3 Section */ /* ****************************************** */ //---------------- Task4 plots data on LCD ---------------- #define ACCELERATION_MAX 1400 #define ACCELERATION_MIN 600 #define SOUND_MAX 900 #define SOUND_MIN 300 #define LIGHT_MAX 200000 #define LIGHT_MIN 0 void drawaxes(void){ if(PlotState == Accelerometer){ BSP_LCD_Drawaxes(AXISCOLOR, BGCOLOR, "Time", "Mag", MAGCOLOR, "Ave", EWMACOLOR, ACCELERATION_MAX, ACCELERATION_MIN); } else if(PlotState == Microphone){ BSP_LCD_Drawaxes(AXISCOLOR, BGCOLOR, "Time", "Sound", SOUNDCOLOR, "", 0, SoundData+100, SoundData-100); } else if(PlotState == Light){ BSP_LCD_Drawaxes(AXISCOLOR, BGCOLOR, "Time", "Light", LIGHTCOLOR, "", 0, LIGHT_MAX, LIGHT_MIN); } } // return the number of digits int numlength(uint32_t n){ if(n < 10) return 1; if(n < 100) return 2; if(n < 1000) return 3; if(n < 10000) return 4; if(n < 100000) return 5; if(n < 1000000) return 6; if(n < 10000000) return 7; if(n < 100000000) return 8; if(n < 1000000000) return 9; return 10; } // *********Task4_Init********* // initializes LCD // Task4 updates the plot and Task5 updates the text at the top of the plot // Inputs: none // Outputs: none void Task4_Init(void){ BSP_LCD_Init(); BSP_LCD_FillScreen(BSP_LCD_Color565(0, 0, 0)); drawaxes(); ReDrawAxes = 0; } // *********Task4********* // updates the plot // Inputs: none // Outputs: none void Task4(void){ TExaS_Task4(); // record system time in array, toggle virtual logic analyzer Profile_Toggle4(); // viewed by the logic analyzer to know Task4 started if(ReDrawAxes){ ReDrawAxes = 0; drawaxes(); } if(PlotState == Accelerometer){ BSP_LCD_PlotPoint(Magnitude, MAGCOLOR); BSP_LCD_PlotPoint(EWMA, EWMACOLOR); } else if(PlotState == Microphone){ BSP_LCD_PlotPoint(SoundData, SOUNDCOLOR); } else if(PlotState == Light){ BSP_LCD_PlotPoint(LightData, LIGHTCOLOR); } BSP_LCD_PlotIncrement(); } /* ****************************************** */ /* End of Task4 Section */ /* ****************************************** */ /* ------------------------------------------ */ //------- Task5 displays text on LCD ----------- /* ------------------------------------------ */ // *********Task5_Init********* // initializes LCD // Task5 updates the text at the top of the plot // Inputs: none // Outputs: none void Task5_Init(void){ // assumes BSP_LCD_Init(); has been called BSP_LCD_DrawString(0, 0, "Time=", TOPTXTCOLOR); BSP_LCD_DrawString(0, 1, "Step=", TOPTXTCOLOR); BSP_LCD_DrawString(10, 0, "Light=", TOPTXTCOLOR); BSP_LCD_DrawString(10, 1, "Sound=", TOPTXTCOLOR); } // *********Task5********* // updates the text at the top of the LCD // Inputs: none // Outputs: none void Task5(void){ TExaS_Task5(); // record system time in array, toggle virtual logic analyzer Profile_Toggle5(); // viewed by the logic analyzer to know Task5 started BSP_LCD_SetCursor(5, 0); BSP_LCD_OutUDec4(Time, TOPNUMCOLOR); BSP_LCD_SetCursor(5, 1); BSP_LCD_OutUDec4(Steps, MAGCOLOR); BSP_LCD_SetCursor(16, 0); BSP_LCD_OutUDec4(LightData/100, LIGHTCOLOR); BSP_LCD_SetCursor(16, 1); BSP_LCD_OutUDec4(SoundRMS, SOUNDCOLOR); } /* ****************************************** */ /* End of Task5 Section */ /* ****************************************** */ int main(void){ DisableInterrupts(); BSP_Clock_InitFastest(); Profile_Init(); // initialize the 7 hardware profiling pins // change 1000 to 4-digit number from edX TExaS_Init(GRADER, 1000 ); // initialize the Lab 1 grader // TExaS_Init(LOGICANALYZER, 1000); // initialize the Lab 1 logic analyzer Task0_Init(); // microphone init Task1_Init(); // accelerometer init Task2_Init(); // light init Task3_Init(); // buttons init Task4_Init(); // LCD graphics init Task5_Init(); // LCD text init Time = 0; EnableInterrupts(); // interrupts needed for grader to run /* Task0 runs approximately every 1ms Task1 runs approximately every 100ms Task2 runs approximately every 1s Task3 runs approximately every 100ms Task4 runs approximately every 100ms Task5 runs approximately every 1s */ for(int i = 0;; i = (i + 1) % 1000){ BSP_Delay1ms(1); Task0(); if (i % 100 == 0) Task1(); if (i == 1) Task2(); if (i % 100 == 2) Task3(); if (i % 100 == 3) Task4(); if (i == 4) Task5(); Profile_Toggle6(); if (i == 5) ++Time; } /* while(1){ for(int i=0; i<10; i++){ // runs at about 10 Hz Task0(); // sample microphone Task1(); // sample accelerometer Task3(); // check the buttons and change mode if pressed Task4(); // update the plot BSP_Delay1ms(100); } Task2(); // sample light at 1 Hz Task5(); // update the LCD text at 1 Hz Time++; // 1 Hz Profile_Toggle6(); } */ } // Newton's method // s is an integer // sqrt(s) is an integer uint32_t sqrt32(uint32_t s){ uint32_t t; // t*t will become s int n; // loop counter t = s/16+1; // initial guess for(n = 16; n; --n){ // will finish t = ((t*t+s)/t)/2; } return t; }