Taltech_rtos/Lab4_Fitness_4C123/os.c

299 lines
9.3 KiB
C
Raw Blame History

// os.c
// Runs on LM4F120/TM4C123/MSP432
// A priority/blocking real-time operating system
// Lab 4 starter file.
// Daniel Valvano
// March 25, 2016
// Hint: Copy solutions from Lab 3 into Lab 4
#include <stdint.h>
#include "os.h"
#include "CortexM.h"
#include "BSP.h"
#include "../inc/tm4c123gh6pm.h"
// function definitions in osasm.s
void StartOS(void);
#define NUMTHREADS 8 // maximum number of threads
#define NUMPERIODIC 2 // maximum number of periodic threads
#define STACKSIZE 100 // number of 32-bit words in stack per thread
struct tcb{
int32_t *sp; // pointer to stack (valid for threads not running
struct tcb *next; // linked-list pointer
//*FILL THIS IN****
};
typedef struct tcb tcbType;
tcbType tcbs[NUMTHREADS];
tcbType *RunPt;
int32_t Stacks[NUMTHREADS][STACKSIZE];
void static runperiodicevents(void);
// ******** OS_Init ************
// Initialize operating system, disable interrupts
// Initialize OS controlled I/O: periodic interrupt, bus clock as fast as possible
// Initialize OS global variables
// Inputs: none
// Outputs: none
void OS_Init(void){
DisableInterrupts();
BSP_Clock_InitFastest();// set processor clock to fastest speed
// perform any initializations needed,
// set up periodic timer to run runperiodicevents to implement sleeping
}
void SetInitialStack(int i){
// ****IMPLEMENT THIS****
// **Same as Lab 2 and Lab 3****
}
//******** OS_AddThreads ***************
// Add eight main threads to the scheduler
// Inputs: function pointers to eight void/void main threads
// priorites for each main thread (0 highest)
// Outputs: 1 if successful, 0 if this thread can not be added
// This function will only be called once, after OS_Init and before OS_Launch
int OS_AddThreads(void(*thread0)(void), uint32_t p0,
void(*thread1)(void), uint32_t p1,
void(*thread2)(void), uint32_t p2,
void(*thread3)(void), uint32_t p3,
void(*thread4)(void), uint32_t p4,
void(*thread5)(void), uint32_t p5,
void(*thread6)(void), uint32_t p6,
void(*thread7)(void), uint32_t p7){
// **similar to Lab 3. initialize priority field****
return 1; // successful
}
void static runperiodicevents(void){
// ****IMPLEMENT THIS****
// **DECREMENT SLEEP COUNTERS
// In Lab 4, handle periodic events in RealTimeEvents
}
//******** OS_Launch ***************
// Start the scheduler, enable interrupts
// Inputs: number of clock cycles for each time slice
// Outputs: none (does not return)
// Errors: theTimeSlice must be less than 16,777,216
void OS_Launch(uint32_t theTimeSlice){
STCTRL = 0; // disable SysTick during setup
STCURRENT = 0; // any write to current clears it
SYSPRI3 =(SYSPRI3&0x00FFFFFF)|0xE0000000; // priority 7
STRELOAD = theTimeSlice - 1; // reload value
STCTRL = 0x00000007; // enable, core clock and interrupt arm
StartOS(); // start on the first task
}
// runs every ms
void Scheduler(void){ // every time slice
// ****IMPLEMENT THIS****
// look at all threads in TCB list choose
// highest priority thread not blocked and not sleeping
// If there are multiple highest priority (not blocked, not sleeping) run these round robin
}
//******** OS_Suspend ***************
// Called by main thread to cooperatively suspend operation
// Inputs: none
// Outputs: none
// Will be run again depending on sleep/block status
void OS_Suspend(void){
STCURRENT = 0; // any write to current clears it
INTCTRL = 0x04000000; // trigger SysTick
// next thread gets a full time slice
}
// ******** OS_Sleep ************
// place this thread into a dormant state
// input: number of msec to sleep
// output: none
// OS_Sleep(0) implements cooperative multitasking
void OS_Sleep(uint32_t sleepTime){
// ****IMPLEMENT THIS****
// set sleep parameter in TCB, same as Lab 3
// suspend, stops running
}
// ******** OS_InitSemaphore ************
// Initialize counting semaphore
// Inputs: pointer to a semaphore
// initial value of semaphore
// Outputs: none
void OS_InitSemaphore(int32_t *semaPt, int32_t value){
// ****IMPLEMENT THIS****
// Same as Lab 3
}
// ******** OS_Wait ************
// Decrement semaphore and block if less than zero
// Lab2 spinlock (does not suspend while spinning)
// Lab3 block if less than zero
// Inputs: pointer to a counting semaphore
// Outputs: none
void OS_Wait(int32_t *semaPt){
// ****IMPLEMENT THIS****
// Same as Lab 3
}
// ******** OS_Signal ************
// Increment semaphore
// Lab2 spinlock
// Lab3 wakeup blocked thread if appropriate
// Inputs: pointer to a counting semaphore
// Outputs: none
void OS_Signal(int32_t *semaPt){
// ****IMPLEMENT THIS****
// Same as Lab 3
}
#define FSIZE 10 // can be any size
uint32_t PutI; // index of where to put next
uint32_t GetI; // index of where to get next
uint32_t Fifo[FSIZE];
int32_t CurrentSize;// 0 means FIFO empty, FSIZE means full
uint32_t LostData; // number of lost pieces of data
// ******** OS_FIFO_Init ************
// Initialize FIFO. The "put" and "get" indices initially
// are equal, which means that the FIFO is empty. Also
// initialize semaphores to track properties of the FIFO
// such as size and busy status for Put and Get operations,
// which is important if there are multiple data producers
// or multiple data consumers.
// Inputs: none
// Outputs: none
void OS_FIFO_Init(void){
// ****IMPLEMENT THIS****
// Same as Lab 3
}
// ******** OS_FIFO_Put ************
// Put an entry in the FIFO. Consider using a unique
// semaphore to wait on busy status if more than one thread
// is putting data into the FIFO and there is a chance that
// this function may interrupt itself.
// Inputs: data to be stored
// Outputs: 0 if successful, -1 if the FIFO is full
int OS_FIFO_Put(uint32_t data){
// ****IMPLEMENT THIS****
// Same as Lab 3
return 0; // success
}
// ******** OS_FIFO_Get ************
// Get an entry from the FIFO. Consider using a unique
// semaphore to wait on busy status if more than one thread
// is getting data from the FIFO and there is a chance that
// this function may interrupt itself.
// Inputs: none
// Outputs: data retrieved
uint32_t OS_FIFO_Get(void){uint32_t data;
// ****IMPLEMENT THIS****
// Same as Lab 3
return data;
}
// *****periodic events****************
int32_t *PeriodicSemaphore0;
uint32_t Period0; // time between signals
int32_t *PeriodicSemaphore1;
uint32_t Period1; // time between signals
void RealTimeEvents(void){int flag=0;
static int32_t realCount = -10; // let all the threads execute once
// Note to students: we had to let the system run for a time so all user threads ran at least one
// before signalling the periodic tasks
realCount++;
if(realCount >= 0){
if((realCount%Period0)==0){
OS_Signal(PeriodicSemaphore0);
flag = 1;
}
if((realCount%Period1)==0){
OS_Signal(PeriodicSemaphore1);
flag=1;
}
if(flag){
OS_Suspend();
}
}
}
// ******** OS_PeriodTrigger0_Init ************
// Initialize periodic timer interrupt to signal
// Inputs: semaphore to signal
// period in ms
// priority level at 0 (highest
// Outputs: none
void OS_PeriodTrigger0_Init(int32_t *semaPt, uint32_t period){
PeriodicSemaphore0 = semaPt;
Period0 = period;
BSP_PeriodicTask_InitC(&RealTimeEvents,1000,0);
}
// ******** OS_PeriodTrigger1_Init ************
// Initialize periodic timer interrupt to signal
// Inputs: semaphore to signal
// period in ms
// priority level at 0 (highest
// Outputs: none
void OS_PeriodTrigger1_Init(int32_t *semaPt, uint32_t period){
PeriodicSemaphore1 = semaPt;
Period1 = period;
BSP_PeriodicTask_InitC(&RealTimeEvents,1000,0);
}
//****edge-triggered event************
int32_t *edgeSemaphore;
// ******** OS_EdgeTrigger_Init ************
// Initialize button1, PD6, to signal on a falling edge interrupt
// Inputs: semaphore to signal
// priority
// Outputs: none
void OS_EdgeTrigger_Init(int32_t *semaPt, uint8_t priority){
edgeSemaphore = semaPt;
//***IMPLEMENT THIS***
// 1) activate clock for Port D
// allow time for clock to stabilize
// 2) no need to unlock PD6
// 3) disable analog on PD6
// 4) configure PD6 as GPIO
// 5) make PD6 input
// 6) disable alt funct on PD6
// disable pull-up on PD6
// 7) enable digital I/O on PD6
// (d) PD6 is edge-sensitive
// PD6 is not both edges
// PD6 is falling edge event
// (e) clear PD6 flag
// (f) arm interrupt on PD6
// priority on Port D edge trigger is NVIC_PRI0_R 31 <20> 29
// enable is bit 3 in NVIC_EN0_R
}
// ******** OS_EdgeTrigger_Restart ************
// restart button1 to signal on a falling edge interrupt
// rearm interrupt
// Inputs: none
// Outputs: none
void OS_EdgeTrigger_Restart(void){
//***IMPLEMENT THIS***
// rearm interrupt 3 in NVIC
// clear flag6
}
void GPIOPortD_Handler(void){
//***IMPLEMENT THIS***
// step 1 acknowledge by clearing flag
// step 2 signal semaphore (no need to run scheduler)
// step 3 disarm interrupt to prevent bouncing to create multiple signals
}