This commit is contained in:
Ondrej Hladuvka 2025-06-03 11:46:39 +03:00
parent 7ef60597e4
commit 18a89741e0
4 changed files with 174 additions and 62 deletions

View File

@ -3,15 +3,12 @@
#include "inc/msp432p401r.h"
void BumpInit(void) {
// Port 4 pins 0, 2, 3, 5, 6, 7
// and enables internal resistors
P4->SEL0 &= ~BUMP_PINS;
P4->SEL1 &= ~BUMP_PINS; // 1) configure P4.0 P4.2 P4.3 P4.5 P4.6 P4.7 as gpio
P4->DIR &= ~BUMP_PINS; // 2) configure as input
P4->REN |= BUMP_PINS; // 3) enable pull resisors
P4->SEL1 &= ~BUMP_PINS; // configure P4.0 P4.2 P4.3 P4.5 P4.6 P4.7 as gpio
P4->DIR &= ~BUMP_PINS; // configure as input
P4->REN |= BUMP_PINS; // enable pull resisors
}
uint8_t BumpRead(void) {
// write this as part of Lab 2
return P4->IN;
}

View File

@ -10,51 +10,86 @@
#define THREADS 2
#define PERIODIC_THREADS 2
#define SIZE 100
#define STACKSIZE 100
typedef struct Tcb {
int32_t *sp; // stack pointer
struct Tcb *next; // linked-list
int32_t *blocked; // shows on which semaphore it is blocked
int32_t* sp; // stack pointer
struct Tcb* next; // linked-list
int32_t* blocked; // shows on which semaphore it is blocked
int32_t sleep;
} Tcb_t;
PeriodicEvent_t periodic_event_threads[PERIODIC_THREADS];
Tcb_t tcbs[THREADS];
Tcb_t *run_pt;
int32_t stacks[THREADS][SIZE];
Tcb_t tcbs[THREADS];
Tcb_t* run_pt;
int32_t stacks[THREADS][STACKSIZE];
void RunPeriodicEvents(void);
void __attribute__((naked))
SysTick_Handler(void) { // 1) Saves R0-R3,R12,LR,PC,PSR
__asm( // 2) Prevent interrupt during switch
// 3) Save remaining regs r4-11
// 4) R0=pointer to run_pt, old thread
// 5) Save SP into TCB
// 6) R1 = run_pt, new thread
// 7) new thread SP; SP = run_pt->sp;
// 8) restore regs r4-11
// 9) tasks run with interrupts enabled
); // 10) restore R0-R3,R12,LR,PC,PSR
void __attribute__((naked)) SysTick_Handler(void) {
__asm volatile (
"CPSID I \n" // disable interrupts
"PUSH {R4-R11} \n" // save R4-R11
"LDR R0, =run_pt \n" // R0 = pointer to run_pt
"LDR R1, [R0] \n" // R1 = run_pt
"STR SP, [R1] \n" // save current SP
"PUSH {R0, LR} \n" // save R0, LR
"BL Scheduler \n" // call scheduler
"POP {R0, LR} \n" // restore R0, LR
"LDR R1, [R0] \n" // R1 = run_pt
"LDR SP, [R1] \n" // restore new SP
"POP {R4-R11} \n" // restore R4-R11
"CPSIE I \n" // enable interrupts
"BX LR \n" // exit exception
".align 4 \n"
);
}
void __attribute__((naked))
StartOS(void) {
__asm(// currently running thread
// R2 = value of run_pt
// new thread SP; SP = run_pt->sp;
// restore regs r4-11
// restore regs r0-3
// discard LR from initial stack
// start location
// discard PSR
// Enable interrupts at processor level
); // start first thread
__asm volatile (
"LDR R0, =run_pt \n" // address of run_pt
"LDR R1, [R0] \n" // R1 = run_pt
"LDR SP, [R1] \n" // SP = run_pt->sp
"POP {R4-R11} \n" // restore R4-R11
"POP {R0-R3} \n" // restore R0-R3
"POP {R12} \n" // restore R12
"ADD SP, SP, #4 \n" // skip LR
"POP {LR} \n" // load thread start address
"ADD SP, SP, #4 \n" // skip PSR
"CPSIE I \n" // enable interrupts
"BX LR \n" // start thread
".align 4 \n"
);
}
void SetInitialStack(int idx) {
// Write this code
void SetInitialStack(int i) {
tcbs[i].sp = &stacks[i][STACKSIZE-16];
stacks[i][STACKSIZE-1] = 0x01000000; // xPSR thumb bit
stacks[i][STACKSIZE-16] = 16; // R4
stacks[i][STACKSIZE-15] = 15; // R5
stacks[i][STACKSIZE-14] = 14; // R6
stacks[i][STACKSIZE-13] = 13; // R7
stacks[i][STACKSIZE-12] = 12; // R8
stacks[i][STACKSIZE-11] = 11; // R9
stacks[i][STACKSIZE-10] = 10; // R10
stacks[i][STACKSIZE-9] = 9; // R11
stacks[i][STACKSIZE-8] = 8; // R0
stacks[i][STACKSIZE-7] = 7; // R1
stacks[i][STACKSIZE-6] = 6; // R2
stacks[i][STACKSIZE-5] = 5; // R3
stacks[i][STACKSIZE-4] = 4; // R12
stacks[i][STACKSIZE-3] = 0; // LR (0 causes fault if thread returns)
}
// Initialize operating system, disable interrupts
@ -66,11 +101,23 @@ void RoundRobinInit(void) {
}
void AddThreads(void (**threads)(void)) {
// Write this code
uint32_t i = 0;
for (; i < THREADS; ++i) {
SetInitialStack(i);
stacks[i][STACKSIZE-2] = (int32_t)threads[i];
tcbs[i].next = &tcbs[ (i+1) % THREADS ];
tcbs[i].blocked = 0;
tcbs[i].sleep = 0;
// tcbs[i].priority = p0;
}
run_pt = &tcbs[0];
}
void AddPeriodicEventThreads(PeriodicEvent_t *periodic_events) {
// Write this code
uint32_t i = 0;
for (;i < PERIODIC_THREADS; ++i) {
periodic_event_threads[i] = periodic_events[i];
}
}
void RoundRobinLaunch(uint32_t time_slice_cycles) {
@ -79,28 +126,66 @@ void RoundRobinLaunch(uint32_t time_slice_cycles) {
SysTick->VAL = 0; // 3) any write to current clears it
SCB->SHP[11] = 7 << 5; // set priority into top 3 bits of 8-bit register
SysTick->CTRL = 0x00000007; // 4) enable SysTick with core clock and interrupts
TimerA1Init(RunPeriodicEvents, 5000); // 100Hz
StartOS(); // start on the first task
}
void RunPeriodicEvents(void) {
// Write this code (no sleep decreasing)
int32_t i;
for (i = 0; i < THREADS; ++i) {
if (tcbs[i].sleep) {
--(tcbs[i].sleep);
}
}
for (i = 0; i < PERIODIC_THREADS; ++i) {
periodic_event_threads[i].event();
}
}
void Scheduler(void) {
// Write this code (no sleep check)
Tcb_t* t = run_pt->next;
while (t->blocked || t->sleep) {
t = t->next;
}
run_pt = t;
}
void Suspend(void) {
SysTick->VAL = 0; // any write to current clears it
SCB->ICSR |= SCB_ICSR_PENDSTSET_Msk; // trigger SysTick
SysTick->VAL = 0; // clear
SCB->ICSR |= SCB_ICSR_PENDSTSET_Msk; // trigger
}
void Sleep(int32_t time) {
run_pt->sleep = time;
Suspend();
}
// Decrement semaphore
void Wait(int32_t *sema_pt) {
// Write this code similar to RTOS3
CPU_cpsid();
--(*sema_pt);
if((*sema_pt) < 0) {
run_pt->blocked = sema_pt; // reason it is blocked
CPU_cpsie();
Suspend();
}
CPU_cpsie();
}
// Increment semaphore
void Signal(int32_t *sema_pt) {
// Write this code similar to RTOS3
Tcb_t *pt;
CPU_cpsid();
++(*sema_pt);
if ((*sema_pt) <= 0) {
pt = run_pt->next;
while(pt->blocked != sema_pt) {
pt = pt->next;
}
pt->blocked = 0;
}
CPU_cpsie();
}

View File

@ -12,6 +12,7 @@ void RoundRobinInit(void);
void AddThreads(void (**threads)(void));
void AddPeriodicEventThreads(PeriodicEvent_t *periodic_events);
void RoundRobinLaunch(uint32_t time_slice_cycles);
void Sleep(int32_t time);
void Wait(int32_t *sema_pt);
void Signal(int32_t *sema_pt);

View File

@ -2,12 +2,12 @@
#include <stdbool.h>
#include <stdlib.h>
#include "rtos.h"
#include "pwm.h"
#include "bump.h"
#include "reflectance.h"
#include "motor.h"
#include "delay.h"
#include "../common/rtos.h"
#include "../common/pwm.h"
#include "../common/bump.h"
#include "../common/reflectance.h"
#include "../common/motor.h"
#include "../common/delay.h"
#include "inc/msp432p401r.h"
@ -29,6 +29,11 @@ int32_t bump_pressed; // semaphore
uint8_t bump_data, reflectance_data;
void WaitTouchRelease(void) {
while(!(SW1IN || SW2IN)); // wait for touch
while( SW1IN || SW2IN ); // wait for release
}
void SwitchInit(void) {
P1->SEL0 &= ~0x12;
P1->SEL1 &= ~0x12; // 1) configure P1.4 and P1.1 as GPIO
@ -51,7 +56,7 @@ void ColorLEDInit(void) {
P2->OUT &= ~0x07; // all LEDs off
}
void Task1(void) {
void led_task(void) {
while (true) {
if (SW1IN && SW2IN) {
GREENOUT = 1;
@ -76,32 +81,56 @@ void Task1(void) {
}
}
void Task2(void) {
while (true) {
// Motor goes forward and waits until bump is pressed
// When pressed, go backward for some time and turn left for some time
void drive_task(void) {
while (1) {
bump_pressed = 0;
MotorForward(1000, 1000);
Wait(&bump_pressed);
MotorBackward(800, 800);
Sleep(1000);
MotorLeft(800, 800);
Sleep(2000);
}
}
void Task3(void) {
// Read reflectance similar to Lab 3
uint32_t refl_tick_count = 0;
void reflectance_task(void) {
++refl_tick_count;
if (1 == (refl_tick_count % 10)) {
ReflectanceStart();
}
if (2 == (refl_tick_count % 10)) {
reflectance_data = ReflectanceEnd();
}
}
void Task4(void) {
// Read bump and signal if any pressed
void bump_task(void) {
bump_data = BumpRead();
if ((~bump_data & BUMP_PINS)) {
Signal(&bump_pressed);
}
}
int main(void) {
BumpInit();
ReflectanceInit();
PWMInitMotor(?);
PWMInitMotor(3751);
MotorInit();
RedLEDInit();
ColorLEDInit();
SwitchInit();
RoundRobinInit();
AddThreads((void (*[])(void)){Task1, Task2});
AddPeriodicEventThreads((PeriodicEvent_t []){{Task3, 1}, {Task4, 100}});
AddThreads((void (*[])(void)){
led_task,
drive_task
});
AddPeriodicEventThreads((PeriodicEvent_t []) {
{reflectance_task, 1},
{bump_task, 100}
});
RoundRobinLaunch(48000); // 1ms
return 0; // never executes
}